Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to … Read more

Model and Discretization Error Adaptivity within Stationary Gas Transport Optimization

The minimization of operation costs for natural gas transport networks is studied. Based on a recently developed model hierarchy ranging from detailed models of instationary partial differential equations with temperature dependence to highly simplified algebraic equations, modeling and discretization error estimates are presented to control the overall error in an optimization method for stationary and … Read more

Uniqueness of Market Equilibria on Networks with Transport Costs

We study the existence and uniqueness of equilibria for perfectly competitive markets in capacitated transport networks. The model under consideration is rather general so that it captures basic aspects of related models in, e.g., gas or electricity networks. We formulate the market equilibrium model as a mixed complementarity problem and show the equivalence to a … Read more

Nonconvex Equilibrium Models for Gas Market Analysis: Failure of Standard Techniques and Alternative Modeling Approaches

This paper provides a first approach to assess gas market interaction on a network with nonconvex flow models. In the simplest possible setup that adequately reflects gas transport and market interaction, we elaborate on the relation of the solution of a simultaneous competitive gas market game, its corresponding mixed nonlinear complementarity problem (MNCP), and a … Read more

Nonoverlapping Domain Decomposition for Optimal Control Problems governed by Semilinear Models for Gas Flow in Networks

We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order … Read more

Uniqueness and Multiplicity of Market Equilibria on DC Power Flow Networks

We consider uniqueness and multiplicity of market equilibria in a short-run setup where traded quantities of electricity are transported through a capacitated network in which power flows have to satisfy the classical lossless DC approximation. The firms face fluctuating demand and decide on their production, which is constrained by given capacities. Today, uniqueness of such … Read more

Complementarity-Based Nonlinear Programming Techniques for Optimal Mixing in Gas Networks

We consider nonlinear and nonsmooth mixing aspects in gas transport optimization problems. As mixed-integer reformulations of pooling-type mixing models already render small-size instances computationally intractable, we investigate the applicability of smooth nonlinear programming techniques for equivalent complementarity-based reformulations. Based on recent results for remodeling piecewise affine constraints using an inverse parametric quadratic programming approach, we … Read more

Algorithmic Results for Potential-Based Flows: Easy and Hard Cases

Potential-based flows are an extension of classical network flows in which the flow on an arc is determined by the difference of the potentials of its incident nodes. Such flows are unique and arise, for example, in energy networks. Two important algorithmic problems are to determine whether there exists a feasible flow and to maximize … Read more

A Decomposition Method for MINLPs with Lipschitz Continuous Nonlinearities

Many mixed-integer optimization problems are constrained by nonlinear functions that do not possess desirable analytical properties like convexity or factorability or cannot even be evaluated exactly. This is, e.g., the case for problems constrained by differential equations or for models that rely on black-box simulation runs. For these problem classes, we present, analyze, and test … Read more

A Multilevel Model of the European Entry-Exit Gas Market

In entry-exit gas markets as they are currently implemented in Europe, network constraints do not affect market interaction beyond the technical capacities determined by the TSO that restrict the quantities individual firms can trade at the market. It is an up to now unanswered question to what extent existing network capacity remains unused in an … Read more