Iteration-complexity of first-order penalty methods

This paper considers a special but broad class of convex programing (CP) problems whose feasible region is a simple compact convex set intersected with the inverse image of a closed convex cone under an affine transformation. We study two first-order penalty methods for solving the above class of problems, namely: the quadratic penalty method and … Read more

Convex Optimization Methods for Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression

In this paper, we study convex optimization methods for computing the trace norm regularized least squares estimate in multivariate linear regression. The so-called factor estimation and selection (FES) method, recently proposed by Yuan et al. [17], conducts parameter estimation and factor selection simultaneously and have been shown to enjoy nice properties in both large and … Read more

A polynomial predictor-corrector trust-region algorithm for linear programming

In this paper we present a scaling-invariant interior-point predictor-corrector type algorithm for linear programming (LP) whose iteration-complexity is polynomially bounded by the dimension and the logarithm of a certain condition number of the LP constraint matrix. At the predictor stage, the algorithm either takes the step along the standard affine scaling direction or a new … Read more

Primal-dual first-order methods with ${\cal O}(1/\epsilon)$ iteration-complexity for cone programming

In this paper we consider the general cone programming problem, and propose primal-dual convex (smooth and/or nonsmooth) minimization reformulations for it. We then discuss first-order methods suitable for solving these reformulations, namely, Nesterov’s optimal method \cite{Nest83-1,Nest05-1}, Nesterov’s smooth approximation scheme \cite{Nest05-1}, and Nemirovski’s prox-method \cite{Nem05-1}, and propose a variant of Nesterov’s optimal method which has … Read more

A strong bound on the integral of the central path curvature and its relationship with the iteration complexity of primal-dual path-following LP algorithms

The main goals of this paper are to: i) relate two iteration-complexity bounds associated with the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming (LP), and; ii) study the geometrical structure of the central path in the context of LP. The first forementioned iteration-complexity bound is expressed in terms of an integral introduced by Sonnevend, Stoer and … Read more

An Iterative Solver-Based Long-Step Infeasible Primal-Dual Path-Following Algorithm for Convex QP Based on a Class of Preconditioners

In this paper we present a long-step infeasible primal-dual path-following algorithm for convex quadratic programming (CQP) whose search directions are computed by means of a preconditioned iterative linear solver. In contrast to the authors’ previous paper \cite{ONE04}, we propose a new linear system, which we refer to as the \emph{hybrid augmented normal equation} (HANE), to … Read more

Large-Scale Semidefinite Programming via Saddle Point Mirror-Prox Algorithm

In this paper, we first develop “economical” representations for positive semidefinitness of well-structured sparse symmetric matrix. Using the representations, we then reformulate well-structured large-scale semidefinite problems into smooth convex-concave saddle point problems, which can be solved by a Prox-method with efficiency ${\cal O}(\epsilon^{-1})$ developed in \cite{Nem}. Some numerical implementations for large-scale Lovasz capacity and MAXCUT … Read more

A New Conjugate Gradient Algorithm Incorporating Adaptive Ellipsoid Preconditioning

The conjugate gradient (CG) algorithm is well-known to have excellent theoretical properties for solving linear systems of equations $Ax = b$ where the $n\times n$ matrix $A$ is symmetric positive definite. However, for extremely ill-conditioned matrices the CG algorithm performs poorly in practice. In this paper, we discuss an adaptive preconditioning procedure which improves the … Read more

A modified nearly exact method for solving low-rank trust region subproblem

In this paper we present a modified nearly exact (MNE) method for solving low-rank trust region (LRTR) subproblem. The LRTR subproblem is to minimize a quadratic function, whose Hessian is a positive diagonal matrix plus explicit low-rank update, subject to a Dikin-type ellipsoidal constraint, whose scaling matrix is positive definite and has the similar structure … Read more

An Iterative Solver-Based Infeasible Primal-Dual Path-Following Algorithm for Convex QP

In this paper we develop an interior-point primal-dual long-step path-following algorithm for convex quadratic programming (CQP) whose search directions are computed by means of an iterative (linear system) solver. We propose a new linear system, which we refer to as the \emph{augmented normal equation} (ANE), to determine the primal-dual search directions. Since the condition number … Read more