A Frank-Wolfe Based Branch-and-Bound Algorithm for Mean-Risk Optimization

We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems … Read more

A Feasible Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer Programming

We propose a feasible active set method for convex quadratic programming problems with non-negativity constraints. This method is specifically designed to be embedded into a branch-and-bound algorithm for convex quadratic mixed integer programming problems. The branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer programming proposed by Buchheim, Caprara and Lodi to the presence … Read more

A Fast Active Set Block Coordinate Descent Algorithm for l1-regularized least squares

The problem of finding sparse solutions to underdetermined systems of linear equations arises in several real-world problems (e.g. signal and image processing, compressive sensing, statistical inference). A standard tool for dealing with sparse recovery is the l1-regularized least-squares approach that has been recently attracting the attention of many researchers. In this paper, we describe an … Read more

Derivative-free Methods for Mixed-Integer Constrained Optimization Problems

Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integer NonLinear Programming … Read more

Nonmonotone GRASP

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications … Read more

A Derivative-Free Algorithm for Constrained Global Optimization based on Exact Penalty Functions

Constrained global optimization problems can be tackled by using exact penalty approaches. In a preceding paper, we proposed an exact penalty algorithm for constrained problems which combines an unconstrained global minimization technique for minimizing a non-differentiable exact penalty func- tion for given values of the penalty parameter, and an automatic updating of the penalty parameter … Read more

Derivative-free Robust Optimization for Circuit Design

In this paper, we introduce a framework for derivative-free robust optimization based on the use of an efficient derivative-free optimization routine for mixed integer nonlinear problems. The proposed framework is employed to find a robust optimal design of a particular integrated circuit (namely a DC-DC converter commonly used in portable electronic devices). The proposed robust … Read more

A variable fixing version of the two-block nonlinear constrained Gauss-Seidel algorithm for ℓ1-regularized least-squares

The problem of finding sparse solutions to underdetermined systems of linear equations is very common in many fields as e.g. in signal/image processing and statistics. A standard tool for dealing with sparse recovery is the ℓ1-regularized least-squares approach that has recently attracted the attention of many researchers. In this paper, we describe a new version … Read more

A Linesearch-based Derivative-free Approach for Nonsmooth Optimization

In this paper, we propose new linesearch-based methods for nonsmooth optimization problems when first-order information on the problem functions is not available. In the first part, we describe a general framework for bound-constrained problems and analyze its convergence towards stationary points, using the Clarke-Jahn directional derivative. In the second part, we consider inequality constrained optimization … Read more

A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations

In this paper we study a class of derivative-free unconstrained minimization algorithms employing nonmonotone inexact linesearch techniques along a set of suitable search directions. In particular, we define globally convergent nonmonotone versions of some well-known derivative-free methods and we propose a new algorithm combining coordinate rotations with approximate simplex gradients. Through extensive numerical experimentation, we … Read more