Analysis of Sparse Cutting-plane for Sparse MILPs with Applications to Stochastic MILPs

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed integer linear programs (MILP) with sparse formulations. We examine three kinds of problems: packing problems, covering problems, and more general MILPs with the only assumption that the objective function is non-negative. Given a MILP instance of one of these three … Read more

New Formulation and Strong MISOCP Relaxations for AC Optimal Transmission Switching Problem

As the modern transmission control and relay technologies evolve, transmission line switching has become an important option in power system operators’ toolkits to reduce operational cost and improve system reliability. Most recent research has relied on the DC approximation of the power flow model in the optimal transmission switching problem. However, it is known that … Read more

Relaxations and discretizations for the pooling problem

The pooling problem is a folklore NP-hard global optimization problem that finds applications in industries such as petrochemical refining, wastewater treatment, and mining. This paper assimilates the vast literature on this problem that is dispersed over different areas and gives unifying arguments and new insights on prevalent techniques. We also present new ideas for computing … Read more

Strong SOCP Relaxations for the Optimal Power Flow Problem

This paper proposes three strong second order cone programming (SOCP) relaxations for the AC optimal power flow (OPF) problem. These three relaxations are incomparable to each other and two of them are incomparable to the standard SDP relaxation of OPF. Extensive computational experiments show that these relaxations have numerous advantages over existing convex relaxations in … Read more

A Cycle-Based Formulation and Valid Inequalities for DC Power Transmission Problems with Switching

It is well-known that optimizing network topology by switching on and off transmission lines improves the efficiency of power delivery in electrical networks. In fact, the USA Energy Policy Act of 2005 (Section 1223) states that the U.S. should “encourage, as appropriate, the deployment of advanced transmission technologies” including “optimized transmission line configurations”. As such, … Read more

Some lower bounds on sparse outer approximations of polytopes

Motivated by the need to better understand the properties of sparse cutting-planes used in mixed integer programming solvers, the paper [1] studied the idealized problem of how well a polytope is approximated by the use of sparse valid inequalities. As an extension to this work, we study the following “less idealized” questions in this pa- … Read more

Inexactness of SDP Relaxation and Valid Inequalities for Optimal Power Flow

It has been recently proven that the semidefinite programming (SDP) relaxation of the optimal power flow problem over radial networks is exact under technical conditions such as not including generation lower bounds or allowing load over-satisfaction. In this paper, we investigate the situation where generation lower bounds are present. We show that even for a … Read more

Mixed-integer Quadratic Programming is in NP

Mixed-integer quadratic programming (MIQP) is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing … Read more

How Good Are Sparse Cutting-Planes?

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-\&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In order to understand this question better, given a polyope $P$ (e.g. the integer hull of … Read more

Improving the integer L-shaped method

We consider the integer L-shaped method for two-stage stochastic integer programs. To improve the performance of the algorithm, we present and combine two strategies. First, to avoid time-consuming exact evaluations of the second-stage cost function, we propose a simple modification that alternates between linear and mixed-integer subproblems. Then, to better approximate the shape of the … Read more