On the Role of the Norm Constraint in Portfolio Selection

Recently, several optimization approaches for portfolio selection have been proposed in order to alleviate the estimation error in the optimal portfolio. Among such are the norm-constrained variance minimization and the robust portfolio models. In this paper, we examine the role of the norm constraint in the portfolio optimization from several directions. First, it is shown … Read more

High accuracy semidefinite programming bounds for kissing numbers

The kissing number in n-dimensional Euclidean space is the maximal number of non-overlapping unit spheres which simultaneously can touch a central unit sphere. Bachoc and Vallentin developed a method to find upper bounds for the kissing number based on semidefinite programming. This paper is a report on high accuracy calculations of these upper bounds for … Read more

Modeling the Mobile Oil Recovery Problem as a Multiobjective Vehicle Routing Problem

The Mobile Oil Recovery (MOR) unit is a truck able to pump marginal wells in a petrol field. The goal of the MOR optimization Problem (MORP) is to optimize both the oil extraction and the travel costs. We describe several formulations for the MORP using a single vehicle or a fleet of vehicles. We have … Read more

A New Relaxation Framework for Quadratic Assignment Problems based on Matrix Splitting

Quadratic assignment problems (QAPs) are among the hardest discrete optimization problems. Recent study shows that even obtaining a strong lower bound for QAPs is a computational challenge. In this paper, we first discuss how to construct new simple convex relaxations of QAPs based on various matrix splitting schemes. Then we introduce the so-called symmetric mappings … Read more

The opportunistic replacement problem: analysis and case studies

We consider an optimization model for determining optimal opportunistic maintenance (that is, component replacement) schedules when data is deterministic. This problem generalizes that of Dickman, Epstein, and Wilamowsky [21] and is a natural starting point for the modelling of replacement schedules when component lives are non-deterministic. We show that this basic opportunistic replacement problem is … Read more

Asset-Liability Management Modelling with Risk Control by Stochastic Dominance

An Asset-Liability Management model with a novel strategy for controlling risk of underfunding is presented in this paper. The basic model involves multiperiod decisions (portfolio rebalancing) and deals with the usual uncertainty of investment returns and future liabilities. Therefore it is well-suited to a stochastic programming approach. A stochastic dominance concept is applied to measure … Read more

Robust Portfolio Optimization with Derivative Insurance Guarantees

Robust portfolio optimization finds the worst-case portfolio return given that the asset returns are realized within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market crashes, that is, if the asset returns … Read more

OSPF Routing with Optimal Oblivious Performance Ratio Under Polyhedral Demand Uncertainty

We study the best OSPF style routing problem in telecommunication networks, where weight management is employed to get a routing configuration with the minimum oblivious ratio. We consider polyhedral demand uncertainty: the set of traffic matrices is a polyhedron defined by a set of linear constraints, and the performance of each routing is assessed on … Read more

A multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem

This paper addresses a constrained two-dimensional (2D), non-guillotine restricted, packing problem, where a fixed set of small rectangles has to be packed into a larger stock rectangle so as to maximize the value of the rectangles packed. The algorithm we propose hybridizes a novel placement procedure with a genetic algorithm based on random keys. We … Read more

A parallel between two classes of pricing problems in transportation and economics

In this work, we establish a parallel between two classes of pricing problems that have attracted the attention of researchers in economics, theoretical computer science and operations research, each community addressing issues from its own vantage point. More precisely, we contrast the problems of pricing a network or a product line, in order to achieve … Read more