Continuous Equality Knapsack with Probit-Style Objectives

We study continuous, equality knapsack problems with uniform separable, non-convex objective functions that are continuous, strictly increasing, antisymmetric about a point, and have concave and convex regions. For example, this model captures a simple allocation problem with the goal of optimizing an expected value where the objective is a sum of cumulative distribution functions of … Read more

Comparing league formats from a business oriented view: the case of Argentina’s National Basketball League

During the last decades, the use of advanced optimization algorithms to generate sports timetables has caught the attention of both academics and practitioners. From a managerial standpoint, the competition’s structure and the design of the league’s schedule represent key strategic decisions with a direct impact in terms of revenue and other important indicators. Argentina’s National … Read more

Integer Programming Models for Round Robin Tournaments

Round robin tournaments are omnipresent in sport competitions and beyond. We propose two new integer programming formulations for scheduling a round robin tournament, one of which we call the matching formulation. We analytically compare their linear relaxations with the linear relaxation of a well-known traditional formulation. We find that the matching formulation is stronger than … Read more

Vehicle Routing with Heterogeneous Time Windows

We consider a novel variant of the heterogeneous vehicle routing problem (VRP) in which each customer has different availability time windows for every vehicle. In particular, this covers our motivating application of planning daily delivery tours for a single vehicle, where customers can be available at different times each day. The existing literature on heterogeneous … Read more

An integrated assignment, routing, and speed model for roadway mobility and transportation with environmental, efficiency, and service goals

Managing all the mobility and transportation services with autonomous vehicles for users of a smart city requires determining the assignment of the vehicles to the users and their routing in conjunction with their speed. Such decisions must ensure low emission, efficiency, and high service quality by also considering the impact on traffic congestion caused by … Read more

Dual Bounds from Decision Diagram-Based Route Relaxations: An Application to Truck-Drone Routing

For vehicle routing problems, strong dual bounds on the optimal value are needed to develop scalable exact algorithms, as well as to evaluate the performance of heuristics. In this work, we propose an iterative algorithm to compute dual bounds motivated by connections between decision diagrams (DDs) and dynamic programming (DP) models used for pricing in … Read more

Using Neural Networks to Guide Data-Driven Operational Decisions

We propose to use Deep Neural Networks to solve data-driven stochastic optimization problems. Given the historical data of the observed covariate, taken decision, and the realized cost in past periods, we train a neural network to predict the objective value as a function of the decision and the covariate. Once trained, for a given covariate, … Read more

A Machine Learning Approach to Solving Large Bilevel and Stochastic Programs: Application to Cycling Network Design

We present a novel machine learning-based approach to solving bilevel programs that involve a large number of independent followers, which as a special case include two-stage stochastic programming. We propose an optimization model that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate the objective values of unsampled followers. … Read more

Decarbonizing OCP

Problem definition: We present our collaboration with the OCP Group, one of the world’s largest producers of phosphate and phosphate-based products, in support of a green initiative designed to reduce OCP’s carbon emissions significantly. We study the problem of decarbonizing OCP’s electricity supply by installing a mixture of solar panels and batteries to minimize its … Read more

On solving the Cross-dock Door Assignment Problem, CDAP

A class of strong lower bounds on the solution value of a Linearized Integer Programming (LIP) reformulation is introduced for the binary quadratic optimization model to assign origin and destination nodes to strip and stack doors, resp., in a cross-dock infrastructure, whose goal is to minimize the transportation cost of the commodities to be handled … Read more