The Robust Bike Sharing Rebalancing Problem: Formulations and a Branch-and-Cut Algorithm

Bike Sharing Systems (BSSs) offer a sustainable and efficient urban transportation solution, bringing flexible and eco-friendly alternatives to city logistics. During their operation, BSSs may suffer from unbalanced bike distribution among stations, requiring rebalancing operations throughout the system. The inherent uncertain demand at the stations further complicates these rebalancing operations, even when performed during downtime. … Read more

Data-driven Stochastic Vehicle Routing Problems with Deadlines

Vehicle routing problems (VRPs) with deadlines have received significant attention around the world. Motivated by a real-world food delivery problem, we assume that the travel time depends on the routing decisions, and study a data-driven stochastic VRP with deadlines and endogenous uncertainty. We use the non-parametric approaches, including k-nearest neighbor (kNN) and kernel density estimation … Read more

Optimizing the Path Towards Plastic-Free Oceans

Increasing ocean plastic pollution is irreversibly harming ecosystems and human economic activities. We partner with a non-profit organization and use optimization to help clean up oceans from plastic faster. Specifically, we optimize the route of their plastic collection system in the ocean to maximize the quantity of plastic collected over time. We formulate the problem … Read more

DeLuxing: Deep Lagrangian Underestimate Fixing for Column-Generation-Based Exact Methods

In this paper, we propose an innovative variable fixing strategy called deep Lagrangian underestimate fixing (DeLuxing). It is a highly effective approach for removing unnecessary variables in column-generation (CG)-based exact methods used to solve challenging discrete optimization problems commonly encountered in various industries, including vehicle routing problems (VRPs). DeLuxing employs a novel linear programming (LP) … Read more

Optimal Multi-Agent Pickup and Delivery Using Branch-and-Cut-and-Price

Given a set of agents and a set of pickup-delivery requests located on a two-dimensional map, the Multi-Agent Pickup and Delivery problem assigns the requests to the agents such that every agent moves from its start location to the locations of its assigned requests and finally to its end location without colliding into any other … Read more

Delay-Resistant Robust Vehicle Routing with Heterogeneous Time Windows

We consider a robust variant of the vehicle routing problem with heterogeneous time windows (RVRP-HTW) with a focus on delay-resistant solutions. Here, customers have different availability time windows for every vehicle and must be provided with a preferably tight appointment window for the planned service. Different vehicles are a possibility to model different days on … Read more

Planning a Zero-Emission Mixed-Fleet Public Bus System with Minimal Life Cycle Cost

The variety of available technology options for the operation of zero-emission bus systems gives rise to the problem of finding an optimal technology decision for bus operators. Among others, overnight charging, opportunity charging and hydrogen-based technology options are frequently pursued technological solutions. As their operating conditions are strongly influenced by the urban context, an optimal … Read more

Inverse Optimization for Routing Problems

We propose a method for learning decision-makers’ behavior in routing problems using Inverse Optimization (IO). The IO framework falls into the supervised learning category and builds on the premise that the target behavior is an optimizer of an unknown cost function. This cost function is to be learned through historical data, and in the context … Read more

Robust Workforce Management with Crowdsourced Delivery

We investigate how crowdsourced delivery platforms with both contracted and ad-hoc couriers can effectively manage their workforce to meet delivery demands amidst uncertainties. Our objective is to minimize the hiring costs of contracted couriers and the crowdsourcing costs of ad-hoc couriers while considering the uncertain availability and behavior of the latter. Due to the complication … Read more

Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks

Citation Ojha, R., Chen, W., Zhang, H., Khir, R., Erera, A. & Van Hentenryck, P. (2023). Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks. Article Download View Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks