Block-Iterative and String-Averaging Projection Algorithms in Proton Computed Tomography Image Reconstruction

Proton computed tomography (pCT) is an imaging modality that has been suggested as a means for reducing the range uncertainty during proton radiation treatments. By measuring the spatial location of individual protons pre- and post-patient, as well as the energy lost along the proton path, three dimensional maps of patient water equivalent electron densities can … Read more

Reconstruction of CT Images from Parsimonious Angular Measurements via Compressed Sensing

Computed Tomography is one of the most popular diagnostic tools available to medical professionals. However, its diagnostic power comes at a cost to the patient- significant radiation exposure. The amount of radiation exposure is a function of the number of angular measurements necessary to successfully reconstruct the imaged volume. Compressed sensing on the other hand … Read more

A First-Order Smoothed Penalty Method for Compressed Sensing

We propose a first-order smoothed penalty algorithm (SPA) to solve the sparse recovery problem min{||x||_1 : Ax=b}. SPA is efficient as long as the matrix-vector product Ax and A^Ty can be computed efficiently; in particular, A need not be an orthogonal projection matrix. SPA converges to the target signal by solving a sequence of penalized … Read more

NESTA: A Fast and Accurate First-order Method for Sparse Recovery

Accurate signal recovery or image reconstruction from indirect and possibly under- sampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel fi rst-order methods in convex optimization, most notably Nesterov’s smoothing technique, this paper … Read more

A conjugate-gradient based approach for approximate solutions of quadratic programs

This paper deals with numerical behaviour and convergence properties of a recently presented column generation approach for optimization of so called step-and-shoot radiotherapy treatment plans. The approach and variants of it have been reported to be efficient in practice, finding near-optimal solutions by generating only a low number of columns. The impact of different restrictions … Read more

Controlling the dose distribution with gEUD-type constraints within the convex IMRT optimization framework

Radiation therapy is an important modality in treating various cancers. Various treatment planning and delivery technologies have emerged to support Intensity Modulated Radiation Therapy (IMRT), creating significant opportunities to advance this type of treatment. We investigate the possibility of including the dose prescription, specified by the DVH, within the convex optimization framework for inverse IMRT … Read more

Combining segment generation with direct step-and-shoot optimization in intensity-modulated radiation therapy

A method for generating a sequence of intensity-modulated radiation therapy step-and-shoot plans with increasing number of segments is presented. The objectives are to generate high-quality plans with few, large and regular segments, and to make the planning process more intuitive. The proposed method combines segment generation with direct step-and-shoot optimization, where leaf positions and segment … Read more

Modeling and Simulation of Metabolic Networks for Estimation of Biomass Accumulation Parameters

Metabolic networks are defined as the collection of biochemical reactions within a cell that define the functions of that cell. Due to the growing need to understand the functions of biological organisms for industrial and medical purposes, modeling and simulation of metabolic networks has attracted a lot of attention recently. Traditionally, metabolic networks are modeled … Read more

On diagonally-relaxed orthogonal projection methods

We propose and study a block-iterative projections method for solving linear equations and/or inequalities. The method allows diagonal component-wise relaxation in conjunction with orthogonal projections onto the individual hyperplanes of the system, and is thus called diagonally-relaxed orthogonal projections (DROP). Diagonal relaxation has proven useful in accelerating the initial convergence of simultaneous and block-iterative projection … Read more

A First-Order Framework for Inverse Imaging Problems

We argue that some inverse problems arising in imaging can be efficiently treated using only single-precision (or other reduced-precision) arithmetic, using a combination of old ideas (first-order methods, polynomial preconditioners), and new ones (bilateral filtering, total variation). Using single precision, and having structures which parallelize in the ways needed to take advantage of low-cost/high-performance multi-core/SIMD … Read more