Robustness Analysis for Adaptive Optimization With Application to Industrial Decarbonization in the Netherlands

Robustness analysis assesses the performance of a particular solution under variation in the input data. This is distinct from sensitivity analysis, which assesses how variation in the input data changes a model’s optimal solution. For risk assessment purposes, robustness analysis has more practical value than sensitivity analysis. This is because sensitivity analysis, when applied to … Read more

solar: A solar thermal power plant simulator for blackbox optimization benchmarking

This work introduces solar, a collection of  ten optimization problem instances for benchmarking blackbox optimization solvers. The instances present different design aspects of a concentrated solar power plant simulated by blackbox numerical models. The type of variables (discrete or continuous), dimensionality, and number and types of constraints (including hidden constraints)  differ across instances. Some are deterministic, others are stochastic … Read more

Adjustable Robust Nonlinear Network Design Without Controllable Elements under Load Scenario Uncertainties

We study network design problems for nonlinear and nonconvex flow models without controllable elements under load scenario uncertainties, i.e., under uncertain injections and withdrawals. To this end, we apply the concept of adjustable robust optimization to compute a network design that admits a feasible transport for all, possibly infinitely many, load scenarios within a given … Read more

Frequency regulation with storage: On losses and profits

Low-carbon societies will need to store vast amounts of electricity to balance intermittent generation from wind and solar energy, for example, through frequency regulation. Here, we derive an analytical solution to the decision-making problem of storage operators who sell frequency regulation power to grid operators and trade electricity on day-ahead markets. Mathematically, we treat future … Read more

Accurate and Warm-Startable Linear Cutting-Plane Relaxations for ACOPF

We present a linear cutting-plane relaxation approach that rapidly proves tight lower bounds for the Alternating Current Optimal Power Flow Problem (ACOPF). Our method leverages outer-envelope linear cuts for well-known second-order cone relaxations for ACOPF along with modern cut management techniques. These techniques prove effective on a broad family of ACOPF instances, including the largest … Read more

Inter-DS: A cost saving algorithm for expensive constrained multi-fidelity blackbox optimization

This work introduces a novel blackbox optimization algorithm for computationally expensive constrained multi-fidelity problems. When applying a direct search method to such problems, the scarcity of feasible points may lead to numerous costly evaluations spent on infeasible points. Our proposed fidelity and interruption controlled optimization algorithm addresses this issue by leveraging multi-fidelity information, allowing for … Read more

Incentivizing Investment and Reliability: A Study on Electricity Capacity Markets

The capacity market, a marketplace to exchange available generation capacity for electricity production, provides a major revenue stream for generators and is adopted in several U.S. regions. A subject of ongoing debate, the capacity market is viewed by its proponents as a crucial mechanism to ensure system reliability, while critics highlight its drawbacks such as … Read more

On a Tractable Single-Level Reformulation of a Multilevel Model of the European Entry-Exit Gas Market with Market Power

We propose a framework that allows to quantitatively analyze the interplay of the different agents involved in gas trade and transport in the context of the European entry-exit system. Previous contributions have focused on the case of perfectly competitive buyers and sellers of gas, which allows to replace the respective market equilibrium problem by a … Read more

Sequential Pricing of Electricity

This paper investigates the design and analysis of price formation in wholesale electricity markets given variability, uncertainty, non-convexity, and intertemporal operating constraints. The paper’s primary goal is to develop a framework to assess the many resource participation models, reserve product definitions, and enhanced pricing methods that have arisen in U.S. systems, especially in the context … Read more

Optimization and Simulation for the Daily Operation of Renewable Energy Communities

Renewable Energy Communities (RECs) are an important building block for the decarbonization of the energy sector. The concept of RECs allows individual consumers to join together in local communities to generate, store, consume and sell renewable energy. A major benefit of this collective approach is a better match between supply and demand profiles, and thus, … Read more