Semidefinite Programming Based Algorithms for Sensor Network Localization

An SDP relaxation based method is developed to solve the localization problem in sensor networks using incomplete and inaccurate distance information. The problem is set up to find a set of sensor positions such that given distance constraints are satisfied. The nonconvex constraints in the formulation are then relaxed in order to yield a semidefinite … Read more

Theory of Semidefinite Programming for Sensor Network Localization

We analyze the semidefinite programming (SDP) based model and method for the position estimation problem in sensor network localization and other Euclidean distance geometry applications. We use SDP duality and interior–point algorithm theories to prove that the SDP localizes any network or graph that has unique sensor positions to fit given distance measures. Therefore, we … Read more

An Extension of a Minimax Approach to Multiple Classification

When the mean vectors and the covariance matrices of two classes are available in a binary classification problem, Lanckriet et al.\ \cite{mpm} propose a minimax approach for finding a linear classifier which minimizes the worst-case (maximum) misclassification probability. We extend the minimax approach to a multiple classification problem, where the number $m$ of classes could … Read more

Robust Semidefinite Programming Approaches for Sensor Network Localization with Anchors

We derive a robust primal-dual interior-point algorithm for a semidefinite programming, SDP, relaxation for sensor localization with anchors and with noisy distance information. The relaxation is based on finding a Euclidean Distance Matrix, EDM, that is nearest in the Frobenius norm for the known noisy distances and that satisfies given upper and lower bounds on … Read more

Multi-group Support Vector Machines with measurement costs: a biobjective approach

Support Vector Machine has shown to have good performance in many practical classification settings. In this paper we propose, for multi-group classification, a biobjective optimization model in which we consider not only the generalization ability (modelled through the margin maximization), but also costs associated with the features. This cost is not limited to an economical … Read more

Detecting relevant variables and interactions for classification in Support Vector Machines

The widely used Support Vector Machine (SVM) method has shown to yield good results in Supervised Classification problems. The Binarized SVM (BSVM) is a variant which is able to automatically detect which variables are, by themselves, most relevant for the classifier. In this work, we extend the BSVM introduced by the authors to a method … Read more

Coordinate and Subspace Optimization Methods for Linear Least Squares with Non-Quadratic Regularization

This work addresses the problem of regularized linear least squares (RLS) with non-quadratic separable regularization. Despite being frequently deployed in many applications, the RLS problem is often hard to solve using standard iterative methods. In a recent work [10], a new iterative method called Parallel Coordinate Descent (PCD) was devised. We provide herein a convergence … Read more

New Korkin-Zolotarev Inequalities

Korkin and Zolotarev showed that if $$\sum_i A_i(x_i-\sum_{j>i} \alpha_{ij}x_j)^2$$ is the Lagrange expansion of a Korkin–Zolotarev reduced positive definite quadratic form, then $A_{i+1}\geq \frac{3}{4} A_i$ and $A_{i+2}\geq \frac{2}{3}A_i$. They showed that the implied bound $A_{5}\geq \frac{4}{9}A_1$ is not attained by any KZ-reduced form. We propose a method to optimize numerically over the set of Lagrange … Read more

A Column Generation Approach for Support Vector Machines

The widely used Support Vector Machine (SVM) method has shown to yield good results in Supervised Classification problems. Other methods such as Classification Trees have become more popular among practitioners than SVM thanks to their interpretability, which is an important issue in Data Mining. In this work, we propose an SVM-based method that automatically detects … Read more

A unified approach for inversion problems in intensity-modulated radiation therapy

We propose and study a unified model for handling dose constraints (physical dose, equivalent uniform dose (EUD), etc.) and radiation source constraints in a single mathematical framework based on the split feasibility problem. The model does not impose on the constraints an exogenous objective (merit) function. The optimization algorithm minimizes a weighted proximity function that … Read more