Geometry of Sample Sets in Derivative Free Optimization. Part II: Polynomial Regression and Underdetermined Interpolation

In the recent years, there has been a considerable amount of work in the development of numerical methods for derivative free optimization problems. Some of this work relies on the management of the geometry of sets of sampling points for function evaluation and model building. In this paper, we continue the work developed in [Conn, … Read more

Sparse Covariance Selection via Robust Maximum Likelihood Estimation

We address a problem of covariance selection, where we seek a trade-off between a high likelihood against the number of non-zero elements in the inverse covariance matrix. We solve a maximum likelihood problem with a penalty term given by the sum of absolute values of the elements of the inverse covariance matrix, and allow for … Read more

Solving a Quantum Chemistry problem with Deterministic Global Optimization

The Hartree-Fock method is well known in quantum chemistry, and widely used to obtain atomic and molecular eletronic wave functions, based on the minimization of a functional of the energy. This gives rise to a multi-extremal, nonconvex, polynomial optimization problem. We give a novel mathematical programming formulation of the problem, which we solve by using … Read more

Density-based Globally Convergent Trust-Region Methods for Self-Consistent Field Electronic Structure Calculations

A theory of globally convergent trust-region methods for self-consistent field electronic structure calculations that use the density matrices as variables is developed. The optimization is performed by means of sequential global minimizations of a quadratic model of the true energy. The global minimization of this quadratic model, subject to the idempotency of the density matrix … Read more

Phylogenetic Analysis Via DC Programming

The evolutionary history of species may be described by a phylogenetic tree whose topology captures ancestral relationships among the species, and whose branch lengths denote evolution times. For a fixed topology and an assumed probabilistic model of nucleotide substitution, we show that the likelihood of a given tree is a d.c. (difference of convex) function … Read more

Clustering via Minimum Volume Ellipsoids

We propose minimum volume ellipsoids (MVE) clustering as an alternate clustering technique to k-means clustering for Gaussian data points and explore its value and practicality. MVE clustering allocates data points into clusters that minimizes the total volumes of each cluster’s covering ellipsoids. Motivations for this approach include its scale-invariance, its ability to handle asymmetric and … Read more

An Explicit Semidefinite Characterization of Satisfiability for Tseitin Instances

This paper is concerned with the application of semidefinite programming to the satisfiability problem, and in particular with using semidefinite liftings to efficiently obtain proofs of unsatisfiability. We focus on the Tseitin satisfiability instances which are known to be hard for many proof systems. We present an explicit semidefinite programming problem with dimension linear in … Read more

Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems

In this paper, we propose a new methodology for handling optimization problems with uncertain data. With the usual Robust Optimization paradigm, one looks for the decisions ensuring a required performance for all realizations of the data from a given bounded uncertainty set, whereas with the proposed approach, we require also a controlled deterioration in performance … Read more

Regularization Using a Parameterized Trust Region Subproblem

We present a new method for regularization of ill-conditioned problems, such as those that arise in image restoration or mathematical processing of medical data. The method extends the traditional {\em trust-region subproblem}, \TRS, approach that makes use of the {\em L-curve} maximum curvature criterion, a strategy recently proposed to find a good regularization parameter. We … Read more