Efficient Robust Optimization for Robust Control with Constraints

This paper proposes an efficient computational technique for the optimal control of linear discrete-time systems subject to bounded disturbances with mixed polytopic constraints on the states and inputs. The problem of computing an optimal state feedback control policy, given the current state, is non-convex. A recent breakthrough has been the application of robust optimization techniques … Read more

Support Vector Machine via Sequential Subspace Optimization

We present an optimization engine for large scale pattern recognition using Support Vector Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained optimization problem to an unconstrained form, and solving it using newly developed Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-scale smooth unconstrained optimization. At each iteration … Read more

Pricing a class of exotic options via moments and SDP relaxations

We present a new methodology for the numerical pricing of a class of exotic derivatives such as Asian or barrier options when the underlying asset price dynamics are modelled by a geometric Brownian motion or a number of mean-reverting processes of interest. This methodology identifies derivative prices with infinite-dimensional linear programming problems involving the moments … Read more

Nonlinear optimal control: Numerical approximations via moments and LMI-relaxations

We consider the class of nonlinear optimal control problems with all data (differential equation, state and control constraints, cost) being polynomials. We provide a simple hierarchy of LMI-relaxations whose optimal values form a nondecreasing sequence of lower bounds on the optimal value. Preliminary results show that good approximations are obtained with few moments. CitationLAAS report … Read more

Blind Source Separation using Relative Newton Method combined with Smoothing Method of Multipliers

We study a relative optimization framework for quasi-maximum likelihood blind source separation and relative Newton method as its particular instance. The structure of the Hessian allows its fast approximate inversion. In the second part we present Smoothing Method of Multipliers (SMOM) for minimization of sum of pairwise maxima of smooth functions, in particular sum of … Read more

Topology optimization of a mechanical component subject to dynamical constraints

This paper is concerned with the optimization of continuum structures under dynamic loading using methods from topology design. The constraint functions are non-linear and implicit, their evaluation requires the resolution of a computation-intensive finite-element analysis performed by a black-box commercial structural mechanics software such as MSC/Nastran. We first present a brief overview of topology optimization … Read more

Geometry of Sample Sets in Derivative Free Optimization. Part II: Polynomial Regression and Underdetermined Interpolation

In the recent years, there has been a considerable amount of work in the development of numerical methods for derivative free optimization problems. Some of this work relies on the management of the geometry of sets of sampling points for function evaluation and model building. In this paper, we continue the work developed in [Conn, … Read more

Sparse Covariance Selection via Robust Maximum Likelihood Estimation

We address a problem of covariance selection, where we seek a trade-off between a high likelihood against the number of non-zero elements in the inverse covariance matrix. We solve a maximum likelihood problem with a penalty term given by the sum of absolute values of the elements of the inverse covariance matrix, and allow for … Read more

Solving a Quantum Chemistry problem with Deterministic Global Optimization

The Hartree-Fock method is well known in quantum chemistry, and widely used to obtain atomic and molecular eletronic wave functions, based on the minimization of a functional of the energy. This gives rise to a multi-extremal, nonconvex, polynomial optimization problem. We give a novel mathematical programming formulation of the problem, which we solve by using … Read more

Density-based Globally Convergent Trust-Region Methods for Self-Consistent Field Electronic Structure Calculations

A theory of globally convergent trust-region methods for self-consistent field electronic structure calculations that use the density matrices as variables is developed. The optimization is performed by means of sequential global minimizations of a quadratic model of the true energy. The global minimization of this quadratic model, subject to the idempotency of the density matrix … Read more