Gamma-Robust Facility Relocation Problem

In this paper, we consider relocating facilities, where we have demand changes in the network. Relocations are performed by closing some of the existing facilities from low demand areas and opening new ones in newly emerging areas. However, the actual changes of demand are not known in advance. Therefore, di erent scenarios with known probabilities are … Read more

Public Facility Location Using Dispersion, Population, and Equity Criteria

Administrators/Decision Makers (DMs) responsible for making locational decisions for public facilities have many other overriding factors to consider that dominate traditional OR/MS objectives that relate to response time. We propose that an appropriate role for the OR/MS analyst is to help the DMs identify a good set of solutions rather than an optimal solution that … Read more

Incremental Network Design with Shortest Paths

We introduce a class of incremental network design problems focused on investigating the optimal choice and timing of network expansions. We concentrate on an incremental network design problem with shortest paths. We investigate structural properties of optimal solutions, we show that the simplest variant is NP-hard, we analyze the worst-case performance of natural greedy heuristics, … Read more

ALGORITHM & DOCUMENTATION: MINRES-QLP for Singular Symmetric and Hermitian Linear Equations and Least-Squares Problems

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite … Read more

Transmission Expansion Planning Using an AC Model: Formulations and Possible Relaxations

Transmission expansion planning (TEP) is a rather complicated process which requires extensive studies to determine when, where and how many transmission facilities are needed. A well planned power system will not only enhance the system reliability, but also tend to contribute positively to the overall system operating efficiency. Starting with two mixed-integer nonlinear programming (MINLP) … Read more

A Framework of Constraint Preserving Update Schemes for Optimization on Stiefel Manifold

This paper considers optimization problems on the Stiefel manifold $X^TX=I_p$, where $X\in \mathbb{R}^{n \times p}$ is the variable and $I_p$ is the $p$-by-$p$ identity matrix. A framework of constraint preserving update schemes is proposed by decomposing each feasible point into the range space of $X$ and the null space of $X^T$. While this general framework … Read more

A Continuous Characterization of the Maximum-Edge Biclique Problem

The problem of finding large complete subgraphs in bipartite graphs (that is, bicliques) is a well-known combinatorial optimization problem referred to as the maximum-edge biclique problem (MBP), and has many applications, e.g., in web community discovery, biological data analysis and text mining. In this paper, we present a new continuous characterization for MBP. Given a … Read more

Stochastic Network Design for Disaster Preparedness

We propose a new stochastic modeling approach for a pre-disaster relief network design problem under uncertain demand and transportation capacities. We determine the size and the location of the response facilities and the inventory levels of relief supplies at each facility with the goal of guaranteeing a certain level of network reliability. The overall objective … Read more

Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements … Read more

Robustness Analysis of HottTopixx, a Linear Programming Model for Factoring Nonnegative Matrices

Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very recently that it is tractable under the assumption that the input nonnegative data matrix is separable (that is, there exists a cone spanned by a small subset of the columns containing all columns). Since then, several algorithms have been designed to … Read more