Estimating the Unobservable Components of Electricity Demand Response with Inverse Optimization

Understanding and predicting the electricity demand responses to prices are critical activities for system operators, retailers, and regulators. While conventional machine learning and time series analyses have been adequate for the routine demand patterns that have adapted only slowly over many years, the emergence of active consumers with flexible assets such as solar-plus-storage systems, and … Read more

Sharpness and well-conditioning of nonsmooth convex formulations in statistical signal recovery

\(\) We study a sample complexity vs. conditioning tradeoff in modern signal recovery problems where convex optimization problems are built from sampled observations. We begin by introducing a set of condition numbers related to sharpness in \(\ell_p\) or Schatten-p norms (\(p\in[1,2]\)) based on nonsmooth reformulations of a class of convex optimization problems, including sparse recovery, … Read more

Compressed Sensing: A Discrete Optimization Approach

We study the Compressed Sensing (CS) problem, which is the problem of finding the most sparse vector that satisfies a set of linear measurements up to some numerical tolerance. CS is a central problem in Statistics, Operations Research and Machine Learning which arises in applications such as signal processing, data compression, image reconstruction, and multi-label … Read more

Outlier detection in regression: conic quadratic formulations

In many applications, when building linear regression models, it is important to account for the presence of outliers, i.e., corrupted input data points. Such problems can be formulated as mixed-integer optimization problems involving cubic terms, each given by the product of a binary variable and a quadratic term of the continuous variables. Existing approaches in … Read more

The min-Knapsack Problem with Compactness Constraints and Applications in Statistics

In the min-Knapsack problem, one is given a set of items, each having a certain cost and weight. The objective is to select a subset with minimum cost, such that the sum of the weights is not smaller than a given constant. In this paper we introduce an extension of the min-Knapsack problem with additional … Read more

Computational complexity of decomposing a symmetric matrix as a sum of positive semidefinite and diagonal matrices

We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis and they have been studied for many decades. On the one hand, we prove that when the rank of the positive semidefinite matrix in the decomposition … Read more

Cutting-plane algorithm for sparse estimation of the Cox proportional-hazards model

Survival analysis is a family of statistical methods for analyzing event occurrence times. In this paper, we address the mixed-integer optimization approach to sparse estimation of the Cox proportional-hazards model for survival analysis. Specifically, we propose a high-performance cutting-plane algorithm based on reformulation of bilevel optimization for sparse estimation. This algorithm solves the upper-level problem … Read more

Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution

This work characterizes the effect of depth on the optimization landscape of linear regression, showing that, despite their nonconvexity, deeper models have more desirable optimization landscape. We consider a robust and over-parameterized setting, where a subset of measurements are grossly corrupted with noise and the true linear model is captured via an $N$-layer linear neural … Read more

Metrizing Fairness

We study supervised learning problems for predicting properties of individuals who belong to one of two demographic groups, and we seek predictors that are fair according to statistical parity. This means that the distributions of the predictions within the two groups should be close with respect to the Kolmogorov distance, and fairness is achieved by … Read more

Riemannian Stochastic Proximal Gradient Methods for Nonsmooth Optimization over the Stiefel Manifold

Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to … Read more