Feedback vertex sets and disjoint cycles in planar (di)graphs

We present new fixed parameter algorithms for feedback vertex set and disjoint cycles on planar graphs. We give an $O(c^{\sqrt{k}} + n)$ algorithm for $k$-feedback vertex set and an $O(c^{\sqrt{k}} n)$ algorithm for $k$-disjoint cycles on planar graphs. CitationManuscript 4 July, 2001.ArticleDownload View PDF

A comparison of the Sherali-Adams, Lov\’asz-Schrijver and Lasserre relaxations for sh-1$ programming

Sherali and Adams \cite{SA90}, Lov\’asz and Schrijver \cite{LS91} and, recently, Lasserre \cite{Las01b} have proposed lift and project methods for constructing hierarchies of successive linear or semidefinite relaxations of a $0-1$ polytope $P\subseteq \oR^n$ converging to $P$ in $n$ steps. Lasserre’s approach uses results about representations of positive polynomials as sums of squares and the dual … Read more

A GRASP with path-relinking for private virtual circuit routing

A frame relay service offers virtual private networks to customers by provisioning a set of long-term private virtual circuits (PVCs) between customer endpoints on a large backbone network. During the provisioning of a PVC, routing decisions are made without any knowledge of future requests. Over time, these decisions can cause inefficiencies in the network and … Read more

Geometry of Semidefinite Max-Cut Relaxations via Ranks

Semidefinite programming (SDP) relaxations are proving to be a powerful tool for finding tight bounds for hard discrete optimization problems. This is especially true for one of the easier NP-hard problems, the Max-Cut problem (MC). The well-known SDP relaxation for Max-Cut, here denoted SDP1, can be derived by a first lifting into matrix space and … Read more

A Computational Study of a Gradient-Based Log-Barrier Algorithm for a Class of Large-Scale SDPs

The authors of this paper recently introduced a transformation \cite{BuMoZh99-1} that converts a class of semidefinite programs (SDPs) into nonlinear optimization problems free of matrix-valued constraints and variables. This transformation enables the application of nonlinear optimization techniques to the solution of certain SDPs that are too large for conventional interior-point methods to handle efficiently. Based … Read more

A New Second-Order Cone Programming Relaxation for MAX-CUT problems

We propose a new relaxation scheme for the MAX-CUT problem using second-order cone programming. We construct relaxation problems to reflect the structure of the original graph. Numerical experiments show that our relaxation approaches give better bounds than those based on the spectral decomposition proposed by Kim and Kojima, and that the efficiency of the branch-and-bound … Read more

Solving standard quadratic optimization problems via linear, semidefinite and copositive programming

The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities … Read more

Polyhedral results for two-connected networks with bounded rings

We study the polyhedron associated with a network design problem which consists in determining at minimum cost a two-connected network such that the shortest cycle to which each edge belongs (a “ring”) does not exceed a given length K. We present here a new formulation of the problem and derive facet results for different classes … Read more

Kernels in planar digraphs

A set $S$ of vertices in a digraph $D=(V,A)$ is a kernel if $S$ is independent and every vertex in $V-S$ has an out-neighbour in $S$. We show that there exists an $O(3^{\delta \sqrt{k}} n)$~% \footnote{Throughout this paper the constants $\delta$ and $c$ are the same as the comparative constants mentioned in~\cite{kn:alber}.} algorithm to check … Read more

A Linear Programming Approach to Semidefinite Programming Problems

Until recently, the study of interior point methods has dominated algorithmic research in semidefinite programming (SDP). From a theoretical point of view, these interior point methods offer everything one can hope for; they apply to all SDP’s, exploit second order information and offer polynomial time complexity. Still for practical applications with many constraints $k$, the … Read more