A Multi-Reference Relaxation Enforced Neighborhood Search Heuristic in SCIP

This paper proposes and evaluates a Multi-Reference Relaxation Enforced Neighborhood Search (MRENS) heuristic within the SCIP solver. This study marks the first integration and evaluation of MRENS in a full-fledged MILP solver, specifically coupled with the recently-introduced Lagromory separator for generating multiple reference solutions. Computational experiments on the MIPLIB 2017 benchmark set show that MRENS, … Read more

Equity-Driven Workload Allocation for Crowdsourced Last-Mile Delivery

Crowdshipping, a rapidly growing approach in Last-Mile Delivery (LMD), relies on independent crowdworkers for delivery orders. Building a sustainable network of crowdshippers is essential for the survival and growth of such systems, while their participation is primarily motivated by fair pay. Additionally, the financial well-being of crowdworkers is sensitive to fair compensation, especially for those … Read more

Local Convergence Analysis for Nonisolated Solutions to Derivative-Free Methods of Optimization

This paper provides a local convergence analysis for newly developed derivative-free methods in problems of smooth nonconvex optimization. We focus here on local convergence to local minimizers, which might be nonisolated and hence more challenging for convergence analysis. The main results provide efficient conditions for local convergence to arbitrary local minimizers under the fulfillment of … Read more

Compact Mixed Integer Programming Formulations for the Minimum Biclique Cover Problem

Given a simple graph G = (V, E) with vertex set V and edge set E, the minimum biclique cover problem seeks to cover all edges of the graph with a minimum number of bicliques (i.e., complete bipartite subgraphs). This paper proposes two compact mixed integer programming (MIP) formulations for solving the minimum biclique cover … Read more

Cluster branching for vehicle routing problems

This article introduces Cluster Branching, a novel branching strategy for exact algorithms solving Vehicle Routing Problems (VRPs). While branching is crucial for the efficiency of branch-and-bound-based algorithms, existing branching types such as Edge Branching, CutSet Branching, and Ryan&Foster Branching have their limitations. The proposed branching strategy aggregates multiple edge variables into higher-level decision structures corresponding … Read more

Interdiction of minimum spanning trees and other matroid bases

In the minimum spanning tree (MST) interdiction problem, we are given a graph \(G=(V,E)\) with edge weights, and want to find some \(X\subseteq E\) satisfying a knapsack constraint such that the MST weight in \((V,E\setminus X)\) is maximized. Since MSTs of \(G\) are the minimum weight bases in the graphic matroid of \(G\), this problem … Read more

Computational Methods for the Household Assignment Problem

We consider the problem of assigning the entries of a household data set to real-world address data. This household assignment problem occurs in the geo-referencing step of spatial microsimulation models. The resulting combinatorial optimization model is a maximum weight matching problem with additional side constraints. Even for real-world instances of medium size, such as the … Read more

A General Framework for Sequential Batch-Testing

We consider sequential testing problems that involve a system of \(n\) stochastic components, each of which is either working or faulty with independent probability. The overall state of the system is a function of the state of its individual components, and the goal is to determine the system state by testing its components at the … Read more

Globally Convergent Derivative-Free Methods in Nonconvex Optimization with and without Noise

This paper addresses the study of nonconvex derivative-free optimization problems, where only information of either smooth objective functions or their noisy approximations is available. General derivative-free methods are proposed for minimizing differentiable (not necessarily convex) functions with globally Lipschitz continuous gradients, where the accuracy of approximate gradients is interacting with stepsizes and exact gradient values. … Read more

Efficient Project Scheduling with Autonomous Learning Opportunities

We consider novel project scheduling problems in which the experience gained from completing selected activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities, our model aims to identify the opportunities that result in a maximum reduction of the project makespan when scheduled in sequence. Accounting for the impact of … Read more