Globally Convergent Primal-Dual Active-Set Methods with Inexact Subproblem Solves

We propose primal-dual active-set (PDAS) methods for solving large-scale instances of an important class of convex quadratic optimization problems (QPs). The iterates of the algorithms are partitions of the index set of variables, where corresponding to each partition there exist unique primal-dual variables that can be obtained by solving a (reduced) linear system. Algorithms of … Read more

Sufficient weighted complementarity problems

This paper presents some fundamental results about sufficient linear weighted complementarity problems. Such a problem depends on a nonnegative weight vector. If the weight vector is zero, the problem reduces to a sufficient linear complementarity problem that has been extensively studied. The introduction of the more general notion of a weighted complementarity problem (wCP) was … Read more

Normally admissible stratifications and calculation of normal cones to a finite union of polyhedral sets

This paper considers computation of Fr\’echet and limiting normal cones to a finite union of polyhedra. To this aim, we introduce a new concept of normally admissible stratification which is convenient for calculations of such cones and provide its basic properties. We further derive formulas for the above mentioned cones and compare our approach to … Read more

The Principle of Hamilton for Mechanical Systems with Impacts and Unilateral Constraints

An action integral is presented for Hamiltonian mechanics in canonical form with unilateral constraints and/or impacts. The transition conditions on generalized impulses and the energy are presented as variational inequalities, which are obtained by the application of discontinuous transversality conditions. The energetical behavior for elastic, plastic and blocking type impacts are analyzed. A general impact … Read more

Solving Bilevel Mixed Integer Program by Reformulations and Decomposition

In this paper, we study bilevel mixed integer programming (MIP) problem and present a novel computing scheme based on reformulations and decomposition strategy. By converting bilevel MIP into a constrained mathematical program, we present its single-level reformulations that are friendly to perform analysis and build insights. Then, we develop a decomposition algorithm based on column-and-constraint … Read more

Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-type Constraints and a Regularization Method

Optimization problems with cardinality constraints are very dicult mathematical programs which are typically solved by global techniques from discrete optimization. Here we introduce a mixed-integer formulation whose standard relaxation still has the same solutions (in the sense of global minima) as the underlying cardinality-constrained problem; the relation between the local minima is also discussed in … Read more

Justification of Constrained Game Equilibrium Models

We consider an extension of a noncooperative game where players have joint binding constraints. In this model, the constrained equilibrium can not be implemented within the same noncooperative framework and requires some other additional regulation procedures. We consider several approaches to resolution of this problem. In particular, a share allocation method is presented and substantiated. … Read more

Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities

Stochastic variational inequalities (SVI) model a large class of equilibrium problems subject to data uncertainty, and are closely related to stochastic optimization problems. The SVI solution is usually estimated by a solution to a sample average approximation (SAA) problem. This paper considers the normal map formulation of an SVI, and proposes a method to build … Read more

Individual confidence intervals for true solutions to stochastic variational inequalities

Stochastic variational inequalities (SVI) provide a means for modeling various optimization and equilibrium problems where data are subject to uncertainty. Often it is necessary to estimate the true SVI solution by the solution of a sample average approximation (SAA) problem. This paper proposes three methods for building confidence intervals for components of the true solution, … Read more

Calmness of linear programs under perturbations of all data: characterization and modulus

This paper provides operative point-based formulas (only involving the nominal data, and not data in a neighborhood) for computing or estimating the calmness modulus of the optimal set (argmin) mapping in linear optimization under uniqueness of nominal optimal solutions. Our analysis is developed in two different parametric settings. First, in the framework of canonical perturbations … Read more