Monotonicity and Complexity of Multistage Stochastic Variational Inequalities

In this paper, we consider multistage stochastic variational inequalities (MSVIs). First, we give multistage stochastic programs and multistage multi-player noncooperative game problems as source problems. After that, we derive the monotonicity properties of MSVIs under less restrictive conditions. Finally, the polynomial rate of convergence with respect to sample sizes between the original problem and its … Read more

BilevelJuMP.jl: Modeling and Solving Bilevel Optimization in Julia

In this paper we present BilevelJuMP, a new Julia package to support bilevel optimization within the JuMP framework. The package is a Julia library that enables the user to describe both upper and lower-level optimization problems using the JuMP algebraic syntax. Due to the generality and flexibility our library inherits from JuMP’s syntax, our package … Read more

Global Convergence of Augmented Lagrangian Method Applied to Mathematical Program with Switching Constraints

The mathematical program with switching constraints (MPSC) is a kind of problems with disjunctive constraints. The existing convergence results cannot directly be applied to this kind of problem since the required constraint qualifications for ensuring the convergence are very likely to fail. In this paper, we apply the augmented Lagrangian method (ALM) to solve the … Read more

Global convergence and acceleration of projection methods for feasibility problems involving union convex sets

We prove global convergence of classical projection algorithms for feasibility problems involving union convex sets, which refer to sets expressible as the union of a finite number of closed convex sets. We present a unified strategy for analyzing global convergence by means of studying fixed-point iterations of a set-valued operator that is the union of … Read more

A unified analysis of descent sequences in weakly convex optimization, including convergence rates for bundle methods

We present a framework for analyzing convergence and local rates of convergence of a class of descent algorithms, assuming the objective function is weakly convex. The framework is general, in the sense that it combines the possibility of explicit iterations (based on the gradient or a subgradient at the current iterate), implicit iterations (using a … Read more

Mirror-prox sliding methods for solving a class of monotone variational inequalities

In this paper we propose new algorithms for solving a class of structured monotone variational inequality (VI) problems over compact feasible sets. By identifying the gradient components existing in the operator of VI, we show that it is possible to skip computations of the gradients from time to time, while still maintaining the optimal iteration … Read more

Exact computation of an error bound for a generalized linear complementarity problem with unique solution

This paper considers a generalized form of the standard linear complementarity problem with unique solution and provides a more precise expression of an upper error bound discovered by Chen and Xiang in 2006. This expression has at least two advantages. It makes possible the exact computation of the error bound factor and it provides a … Read more

MPCC Strategies for Nonsmooth NLPs

This paper develops solution strategies for large-scale nonsmooth optimization problems. We transform nonsmooth programs into equivalent mathematical programs with complementarity constraints (MPCCs), and then employ NLP-based strategies for their so- lution. For this purpose, two NLP formulations based on complementarity relaxations are put forward, one of which applies a parameterized formulation and operates with a … Read more

A Penalty Branch-and-Bound Method for Mixed-Binary Linear Complementarity Problems

Linear complementarity problems (LCPs) are an important modeling tool for many practically relevant situations but also have many important applications in mathematics itself. Although the continuous version of the problem is extremely well studied, much less is known about mixed-integer LCPs (MILCPs) in which some variables have to be integer-valued in a solution. In particular, … Read more

Different discretization techniques for solving optimal control problems with control complementarity constraints

There are first-optimize-then-discretize (indirect) and first-discretize-then-optimize (direct) methods to deal with infinite dimensional optimal problems numerically by use of finite element methods. Generally, both discretization techniques lead to different structures. Regarding the indirect method, one derives optimality conditions of the considered infinite dimensional problems in appropriate function spaces firstly and then discretizes them into suitable … Read more