Lipschitz-Free Mirror Descent Methods for Non-Smooth Optimization Problems

The part of the analysis of the convergence rate of the mirror descent method that is connected with the adaptive time-varying step size rules due to Alkousa et al. (MOTOR 2024, pp. 3-18) is corrected. Moreover, a Lipschitz-free mirror descent method that achieves weak ergodic convergence is presented, generalizing the convergence results of the mirror … Read more

Gradient Methods with Online Scaling Part I. Theoretical Foundations

This paper establishes the theoretical foundations of the online scaled gradient methods (OSGM), a framework that utilizes online learning to adapt stepsizes and provably accelerate first-order methods. OSGM quantifies the effectiveness of a stepsize by a feedback function motivated from a convergence measure and uses the feedback to adjust the stepsize through an online learning … Read more

A symmetric extrapolated proximal alternating predictor-corrector method for saddle-point problems

The proximal alternating predictor-corrector (PAPC) method is a widely used first-order algorithm for solving convex-concave saddle-point problems involving both smooth and nonsmooth components. Unlike the primal-dual hybrid gradient (PDHG) method, which incorporates an extrapolation step with parameter $\theta \in (0,1]$ to improve convergence, the existing convergence analysis of PAPC has been limited to the case … Read more

Multi-cut stochastic approximation methods for solving stochastic convex composite optimization

The development of a multi-cut stochastic approximation (SA) method for solving stochastic convex composite optimization (SCCO) problems has remained an open challenge. The difficulty arises from the fact that the stochastic multi-cut model, constructed as the pointwise maximum of individual stochastic linearizations, provides a biased estimate of the objective function, with the error being uncontrollable. … Read more

An Adaptive and Parameter-Free Nesterov’s Accelerated Gradient Method for Convex Optimization

We propose AdaNAG, an adaptive accelerated gradient method based on Nesterov’s accelerated gradient method. AdaNAG is line-search-free, parameter-free, and achieves the accelerated convergence rates \( f(x_k) – f_\star = \mathcal{O}\left(1/k^2\right) \) and \( \min_{i\in\left\{1,\dots, k\right\}} \|\nabla f(x_i)\|^2 = \mathcal{O}\left(1/k^3\right) \) for \( L \)-smooth convex function \( f \). We provide a Lyapunov analysis for … Read more

Steepest descent method using novel adaptive stepsizes for unconstrained nonlinear multiobjective programming

We propose new adaptive strategies to compute stepsizes for the steepest descent method to solve unconstrained nonlinear multiobjective optimization problems without employing any linesearch procedure. The resulting algorithms can be applied to a wide class of nonconvex unconstrained multi-criteria optimization problems satisfying a global Lipschitz continuity condition imposed on the gradients of all objectives. In … Read more

A Symmetric Primal-Dual method with two extrapolation steps for Composite Convex Optimization

Symmetry is a recurring feature in algorithms for monotone operator theory and convex optimization, particularly in problems involving the sum of two operators, as exemplified by the Peaceman–Rachford splitting scheme. However, in more general settings—such as composite optimization problems with three convex functions or structured convex-concave saddle-point formulations—existing algorithms often exhibit inherent asymmetry. In particular, … Read more

Negative Stepsizes Make Gradient-Descent-Ascent Converge

Efficient computation of min-max problems is a central question in optimization, learning, games, and controls. Arguably the most natural algorithm is gradient-descent-ascent (GDA). However, since the 1970s, conventional wisdom has argued that GDA fails to converge even on simple problems. This failure spurred an extensive literature on modifying GDA with additional building blocks such as … Read more

On the Acceleration of Proximal Bundle Methods

The proximal bundle method (PBM) is a fundamental and computationally effective algorithm for solving nonsmooth optimization problems. In this paper, we present the first variant of the PBM for smooth objectives, achieving an accelerated convergence rate of \(\frac{1}{\sqrt{\epsilon}}\log(\frac{1}{\epsilon})\), where \(\epsilon\) is the desired accuracy. Our approach addresses an open question regarding the convergence guarantee of … Read more

An iterative process for the feasibility-seeking problem with sets that are unions of convex sets

In this paper we deal with the feasibility-seeking problem for unions of convex sets (UCS) sets and propose an iterative process for its solution. Renewed interest in this problem stems from the fact that it was recently discovered to serve as a modeling approach in fields of applications and from the ongoing recent research efforts … Read more