A Proximal Stochastic Gradient Method with Progressive Variance Reduction

We consider the problem of minimizing the sum of two convex functions: one is the average of a large number of smooth component functions, and the other is a general convex function that admits a simple proximal mapping. We assume the whole objective function is strongly convex. Such problems often arise in machine learning, known … Read more

Intermediate gradient methods for smooth convex problems with inexact oracle

Between the robust but slow (primal or dual) gradient methods and the fast but sensitive to errors fast gradient methods, our goal in this paper is to develop first-order methods for smooth convex problems with intermediate speed and intermediate sensitivity to errors. We develop a general family of first-order methods, the Intermediate Gradient Method (IGM), … Read more

First-order methods with inexact oracle: the strongly convex case

The goal of this paper is to study the effect of inexact first-order information on the first-order methods designed for smooth strongly convex optimization problems. We introduce the notion of (delta,L,mu)-oracle, that can be seen as an extension of the inexact (delta,L)-oracle previously introduced, taking into account strong convexity. We consider different examples of (delta,L,mu)-oracle: … Read more

Parallel Multi-Block ADMM with o(1/k) Convergence

This paper introduces a parallel and distributed extension to the alternating direction method of multipliers (ADMM). The algorithm decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This Jacobian-type algorithm is well suited for distributed computing and is particularly attractive for solving certain large-scale problems. This paper introduces … Read more

Accelerated Schemes For A Class of Variational Inequalities

We propose a novel method, namely the accelerated mirror-prox (AMP) method, for computing the weak solutions of a class of deterministic and stochastic monotone variational inequalities (VI). The main idea of this algorithm is to incorporate a multi-step acceleration scheme into the mirror-prox method. For both deterministic and stochastic VIs, the developed AMP method computes … Read more

Asynchronous Stochastic Coordinate Descent: Parallelism and Convergence Properties

We describe an asynchronous parallel stochastic proximal coordinate descent algorithm for minimizing a composite objective function, which consists of a smooth convex function plus a separable convex function. In contrast to previous analyses, our model of asynchronous computation accounts for the fact that components of the unknown vector may be written by some cores simultaneously … Read more

A Fast Active Set Block Coordinate Descent Algorithm for l1-regularized least squares

The problem of finding sparse solutions to underdetermined systems of linear equations arises in several real-world problems (e.g. signal and image processing, compressive sensing, statistical inference). A standard tool for dealing with sparse recovery is the l1-regularized least-squares approach that has been recently attracting the attention of many researchers. In this paper, we describe an … Read more

A Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a scalarization proximal point method to solve multiobjective unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions. We prove, under natural assumptions, that the sequence generated by the method is well defined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an extension, for … Read more

A Family of Subgradient-Based Methods for Convex Optimization Problems in a Unifying Framework

We propose a new family of subgradient- and gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objective function is non-smooth, smooth, have composite/saddle structure, or are given by an inexact oracle model. We unified the way of constructing the subproblems which … Read more

Forward-backward truncated Newton methods for convex composite optimization

This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the … Read more