Relating Homogeneous Cones and Positive Definite Cones via hBcalgebras

$T$-algebras are non-associative algebras defined by Vinberg in the early 1960’s for the purpose of studying homogeneous cones. Vinberg defined a cone $K(\mathcal A)$ for each $T$-algebra $\mathcal A$ and proved that every homogeneous cone is isomorphic to one such $K(\mathcal A)$. We relate each $T$-algebra $\mathcal A$ with a space of linear operators in … Read more

PENNON – A Code for Convex Nonlinear and Semidefinite Programming

We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used in PENNON is a generalized version of the Augmented Lagrangian method, originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We present generalization of this algorithm to convex NLP-SDP problems, as implemented in … Read more

A primal-dual symmetric relaxation for homogeneous conic systems

We address the feasibility of the pair of alternative conic systems of constraints Ax = 0, x \in C, and -A^T y \in C^*, defined by an m by n matrix A and a cone C in the n-dimensional Euclidean space. We reformulate this pair of conic systems as a primal-dual pair of conic programs. … Read more

A new class of potential affine algorithms for linear convex programming

We obtain a new class of primal affine algorithms for the linearly constrained convex programming. It is constructed from a family of metrics generated the r power, r>=1, of the diagonal iterate vector matrix. We obtain the so called weak convergence. That class contains, as particular cases, the multiplicative Eggermont algorithm for the minimization of … Read more

A characterization of the distance to infeasibility under block-structured perturbations

We discuss several generalizations of the classical Eckart and Young identity. We show that a natural extension of this identity holds for rectangular matrices defining conic systems of constraints, and for perturbations restricted to a particular block structure, such as those determined by a sparsity pattern. Our results extend and unify the classical Eckart and … Read more

The least-intensity feasible solution for aperture-based inverse planning in radiation therapy.

Aperture-based inverse planning (ABIP) for intensity modulated radiation therapy (IMRT) treatment planning starts with external radiation fields (beams) that fully conform to the target(s) and then superimposes sub-fields called segments to achieve complex shaping of 3D dose distributions. The segments’ intensities are determined by solving a feasibility problem. The least-intensity feasible (LIF) solution, proposed and … Read more

Block-Iterative Algorithms with Underrelaxed Bregman Projections

The notion of relaxation is well understood for orthogonal projections onto convex sets. For general Bregman projections it was considered only for hyperplanes and the question of how to relax Bregman projections onto convex sets that are not linear (i.e., not hyperplanes or half-spaces) has remained open. A definition of underrelaxation of Bregman projections onto … Read more

Optimality Conditions for Vector Optimization with Set-Valued Maps

Based on near convexity, we introduce the concepts of nearly convexlike set-valued maps and nearly semiconvexlike set-valued maps, give some charaterizations of them, and investigate the relationships between them. Then a Farkas-Minkowski type alternative theorem is shown under the assumption of near semiconvexlikeness. By using the alternative theorem and some other lemmas, we establish necessary … Read more

The method of reflection-projection for convex feasibility problems with an obtuse cone

The convex feasibility problem asks to find a point in the intersection of finitely many closed convex sets in Euclidean space. This problem is of fundamental importance in mathematics and physical sciences, and it can be solved algorithmically by the classical method of cyclic projections. In this paper, the case where one of the constraints … Read more

A New Self-Dual Embedding Method for Convex Programming

In this paper we introduce a conic optimization formulation for inequality-constrained convex programming, and propose a self-dual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. This allows for … Read more