Global convergence and acceleration of projection methods for feasibility problems involving union convex sets

We prove global convergence of classical projection algorithms for feasibility problems involving union convex sets, which refer to sets expressible as the union of a finite number of closed convex sets. We present a unified strategy for analyzing global convergence by means of studying fixed-point iterations of a set-valued operator that is the union of … Read more

New Penalized Stochastic Gradient Methods for Linearly Constrained Strongly Convex Optimization

For minimizing a strongly convex objective function subject to linear inequality constraints, we consider a penalty approach that allows one to utilize stochastic methods for problems with a large number of constraints and/or objective function terms. We provide upper bounds on the distance between the solutions to the original constrained problem and the penalty reformulations, … Read more

An inexact ADMM with proximal-indefinite term and larger stepsize

In this paper, an inexact Alternating Direction Method of Multipliers (ADMM) has been proposed for solving the two-block separable convex optimization problem subject to linear equality constraints. The first resulting subproblem is solved inexactly under relative error criterion, while another subproblem called regularization problem is solved inexactly by introducing an indefinite proximal term. Meanwhile, the … Read more

A superlinearly convergent subgradient method for sharp semismooth problems

Subgradient methods comprise a fundamental class of nonsmooth optimization algorithms. Classical results show that certain subgradient methods converge sublinearly for general Lipschitz convex functions and converge linearly for convex functions that grow sharply away from solutions. Recent work has moreover extended these results to certain nonconvex problems. In this work we seek to improve the … Read more

Stable Recovery of Sparse Signals With Non-convex Weighted $r$-Norm Minus $1$-Norm

Given the measurement matrix $A$ and the observation signal $y$, the central purpose of compressed sensing is to find the most sparse solution of the underdetermined linear system $y=Ax+z$, where $x$ is the $s$-sparse signal to be recovered and $z$ is the noise vector. Zhou and Yu \cite{Zhou and Yu 2019} recently proposed a novel … Read more

Graph topology invariant gradient and sampling complexity for decentralized and stochastic optimization

One fundamental problem in decentralized multi-agent optimization is the trade-off between gradient/sampling complexity and communication complexity. We propose new algorithms whose gradient and sampling complexities are graph topology invariant, while their communication complexities remain optimal. For convex smooth deterministic problems, we propose a primal dual sliding (PDS) algorithm that computes an $\epsilon$-solution with $O((\tilde{L}/\epsilon)^{1/2})$ gradient … Read more

Affine invariant convergence rates of the conditional gradient method

We show that the conditional gradient method for the convex composite problem \[\min_x\{f(x) + \Psi(x)\}\] generates primal and dual iterates with a duality gap converging to zero provided a suitable growth property holds and the algorithm makes a judicious choice of stepsizes. The rate of convergence of the duality gap to zero ranges from sublinear … Read more

Unmatched Preconditioning of the Proximal Gradient Algorithm

This works addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). It is known that PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, and lead to an increased complexity in the computation of the proximity step. … Read more

A Stochastic Bregman Primal-Dual Splitting Algorithm for Composite Optimization

We study a stochastic first order primal-dual method for solving convex-concave saddle point problems over real reflexive Banach spaces using Bregman divergences and relative smoothness assumptions, in which we allow for stochastic error in the computation of gradient terms within the algorithm. We show ergodic convergence in expectation of the Lagrangian optimality gap with a … Read more

A nested primal–dual FISTA-like scheme for composite convex optimization problems

We propose a nested primal–dual algorithm with extrapolation on the primal variable suited for minimizing the sum of two convex functions, one of which is continuously differentiable. The proposed algorithm can be interpreted as an inexact inertial forward–backward algorithm equipped with a prefixed number of inner primal–dual iterations for the proximal evaluation and a “warm–start” … Read more