Random Gradient Extrapolation for Distributed and Stochastic Optimization

In this paper, we consider a class of finite-sum convex optimization problems defined over a distributed multiagent network with $m$ agents connected to a central server. In particular, the objective function consists of the average of $m$ ($\ge 1$) smooth components associated with each network agent together with a strongly convex term. Our major contribution … Read more

Bootstrap Robust Prescriptive Analytics

We address the problem of prescribing an optimal decision in a framework where its cost depends on uncertain problem parameters $Y$ that need to be learned from data. Earlier work by Bertsimas and Kallus (2014) transforms classical machine learning methods that merely predict $Y$ from supervised training data $[(x_1, y_1), \dots, (x_n, y_n)]$ into prescriptive … Read more

Amenable cones: error bounds without constraint qualifications

We provide a framework for obtaining error bounds for linear conic problems without assuming constraint qualifications or regularity conditions. The key aspects of our approach are the notions of amenable cones and facial residual functions. For amenable cones, it is shown that error bounds can be expressed as a composition of facial residual functions. The … Read more

Analysis of the Gradient Method with an Armijo-Wolfe Line Search on a Class of Nonsmooth Convex Functions

It has long been known that the gradient (steepest descent) method may fail on nonsmooth problems, but the examples that have appeared in the literature are either devised specifically to defeat a gradient or subgradient method with an exact line search or are unstable with respect to perturbation of the initial point. We give an … Read more

Uniqueness of Market Equilibria on Networks with Transport Costs

We study the existence and uniqueness of equilibria for perfectly competitive markets in capacitated transport networks. The model under consideration is rather general so that it captures basic aspects of related models in, e.g., gas or electricity networks. We formulate the market equilibrium model as a mixed complementarity problem and show the equivalence to a … Read more

Convergent Prediction-Correction-based ADMM for multi-block separable convex programming

The direct extension of the classic alternating direction method with multipliers (ADMMe) to the multi-block separable convex optimization problem is not necessarily convergent, though it often performs very well in practice. In order to preserve the numerical advantages of ADMMe and obtain convergence, many modified ADMM were proposed by correcting the output of ADMMe or … Read more

Unifying abstract inexact convergence theorems and block coordinate variable metric iPiano

An abstract convergence theorem for a class of generalized descent methods that explicitly models relative errors is proved. The convergence theorem generalizes and unifies several recent abstract convergence theorems. It is applicable to possibly non-smooth and non-convex lower semi-continuous functions that satisfy the Kurdyka–Lojasiewicz (KL) inequality, which comprises a huge class of problems. Most of … Read more

Relaxing kink qualifications and proving convergence rates in piecewise smooth optimization

Abstract. In the paper [9] we derived first order (KKT) and second order (SSC) optimality conditions for functions defined by evaluation programs involving smooth elementals and absolute values. In that analysis, a key assumption on the local piecewise linearization was the Linear Independence Kink Qualification (LIKQ), a generalization of the Linear Independence Constraint Qualification (LICQ) … Read more

Adaptive Fista

In this paper we propose an adaptively extrapolated proximal gradient method, which is based on the accelerated proximal gradient method (also known as FISTA), however we locally optimize the extrapolation parameter by carrying out an exact (or inexact) line search. It turns out that in some situations, the proposed algorithm is equivalent to a class … Read more

The nonsmooth landscape of phase retrieval

We consider a popular nonsmooth formulation of the real phase retrieval problem. We show that under standard statistical assumptions, a simple subgradient method converges linearly when initialized within a constant relative distance of an optimal solution. Seeking to understand the distribution of the stationary points of the problem, we complete the paper by proving that … Read more