Degeneracy in Maximal Clique Decomposition for Semidefinite Programs

Exploiting sparsity in Semidefinite Programs (SDP) is critical to solving large-scale problems. The chordal completion based maximal clique decomposition is the preferred approach for exploiting sparsity in SDPs. In this paper, we show that the maximal clique-based SDP decomposition is primal degenerate when the SDP has a low rank solution. We also derive conditions under … Read more

Quantitative recovery conditions for tree-based compressed sensing

As shown in [9, 1], signals whose wavelet coefficients exhibit a rooted tree structure can be recovered — using specially-adapted compressed sensing algorithms — from just $n=\mathcal{O}(k)$ measurements, where $k$ is the sparsity of the signal. Motivated by these results, we introduce a simplified proportional-dimensional asymptotic framework which enables the quantitative evaluation of recovery guarantees … Read more

An accelerated non-Euclidean hybrid proximal extragradient-type Algorithm for convex-concave saddle-point Problems

This paper describes an accelerated HPE-type method based on general Bregman distances for solving monotone saddle-point (SP) problems. The algorithm is a special instance of a non-Euclidean hybrid proximal extragradient framework introduced by Svaiter and Solodov [28] where the prox sub-inclusions are solved using an accelerated gradient method. It generalizes the accelerated HPE algorithm presented … Read more

New Computational Guarantees for Solving Convex Optimization Problems with First Order Methods, via a Function Growth Condition Measure

Motivated by recent work of Renegar, we present new computational methods and associated computational guarantees for solving convex optimization problems using first-order methods. Our problem of interest is the general convex optimization problem f^* = \min_{x \in Q} f(x), where we presume knowledge of a strict lower bound f_slb < f^*. [Indeed, f_slb is naturally ... Read more

Variational Analysis and Applications to Group Dynamics

In this paper, we establish a new version of Ekeland’s variational principle in a new setting of cone pseudo-quasimetric spaces. In constrast to metric spaces, we do not require that each forward Cauchy sequence is forward convergent and that each forward convergent sequence has the unique forward limit. The motivation of this paper comes from … Read more

Regularized HPE-type methods for solving monotone inclusions with improved pointwise iteration-complexity bounds

This paper studies the iteration-complexity of new regularized hybrid proximal extragradient (HPE)-type methods for solving monotone inclusion problems (MIPs). The new (regularized HPE-type) methods essentially consist of instances of the standard HPE method applied to regularizations of the original MIP. It is shown that its pointwise iteration-complexity considerably improves the one of the HPE method … Read more

Local monotonicity and full stability for parametric variational systems

The paper introduces and characterizes new notions of Lipschitzian and H\”olderian full stability of solutions to general parametric variational systems described via partial subdifferential of prox-regular functions acting in finite-dimensional and Hilbert spaces. These notions, postulated certain quantitative properties of single-valued localizations of solution maps, are closely related to local strong maximal monotonicity of associated … Read more

Borwein–Preiss Vector Variational Principle

This article extends to the vector setting the results of our previous work Kruger et al. (2015) which refined and slightly strengthened the metric space version of the Borwein–Preiss variational principle due to Li and Shi, J. Math. Anal. Appl. 246(1), 308–319 (2000). We introduce and characterize two seemingly new natural concepts of epsilon-minimality, one … Read more

Generalized Uniformly Optimal Methods for Nonlinear Programming

In this paper, we present a generic framework to extend existing uniformly optimal convex programming algorithms to solve more general nonlinear, possibly nonconvex, optimization problems. The basic idea is to incorporate a local search step (gradient descent or Quasi-Newton iteration) into these uniformly optimal convex programming methods, and then enforce a monotone decreasing property of … Read more

Noisy Euclidean distance realization: robust facial reduction and the Pareto frontier

We present two algorithms for large-scale low-rank Euclidean distance matrix completion problems, based on semidefinite optimization. Our first method works by relating cliques in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial procedure that is provably robust and parallelizable. Our second algorithm is a first order method … Read more