Recent Advances in Nonconvex Semi-infinite Programming: Applications and Algorithms

The goal of this literature review is to give an update on the recent developments for semi-infinite programs (SIPs), approximately over the last 20 years. An overview of the different solution approaches and the existing algorithms is given. We focus on deterministic algorithms for SIPs which do not make any convexity assumptions. In particular, we … Read more

Mathematical Programming formulations for the Alternating Current Optimal Power Flow problem

Power flow refers to the injection of power on the lines of an electrical grid, so that all the injections at the nodes form a consistent flow within the network. Optimality, in this setting, is usually intended as the minimization of the cost of generating power. Current can either be direct or alternating: while the … Read more

Cycle-based formulations in Distance Geometry

The distance geometry problem asks to find a realization of a given simple edge-weighted graph in a Euclidean space of given dimension K, where the edges are realized as straight segments of lengths equal (or as close as possible) to the edge weights. The problem is often modelled as a mathematical programming formulation involving decision … Read more

Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems

In this paper we address a game theory problem arising in the context of network security. In traditional game theory problems, given a defender and an attacker, one searches for mixed strategies which minimize a linear payoff functional. In the problem addressed in this paper an additional quadratic term is added to the minimization problem. … Read more

Pump scheduling in drinking water distribution networks with an LP/NLP-based branch and bound

This paper offers a novel approach for computing globally optimal solutions to the pump scheduling problem in drinking water distribution networks. A tight integer linear relaxation of the original non-convex formulation is devised and solved by branch and bound where integer nodes are investigated through non-linear programming to check the satisfaction of the non-convex constraints … Read more

A new discrete filled function with generic local searches for global nonlinear integer optimization

The problem of finding global minima of nonlinear discrete functions arises in many fields of practical matters. In recent years, methods based on discrete filled functions become popular as ways of solving these sort of problems. However, they rely on the steepest descent method for local searches. Here we present an approach that does not … Read more

On tackling reverse convex constraints for non-overlapping of unequal circles

We study the unequal circle-circle non-overlapping constraints, a form of reverse convex constraints that often arise in optimization models for cutting and packing applications. The feasible region induced by the intersection of circle-circle non-overlapping constraints is highly non-convex, and standard approaches to construct convex relaxations for spatial branch-and-bound global optimization of such models typically yield … Read more

Optimization and Validation of Pumping System Design and Operation for Water Supply in High-Rise Buildings

The application of mathematical optimization methods provides the capacity to increase the energy efficiency and to lower the investment costs of technical systems, considerably. We present a system approach for the optimization of the design and operation of pumping systems and exemplify it by applying it to the water supply of high-rise buildings. The underlying … Read more

Distance geometry and data science

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its … Read more

Application of outer approximation to forecasting losses and scenarios in the target of portfolios with high of nonlinear risk

The purpose of this paper is to find appropriate solutions to concave quadratic programming using outer approximation algorithm, which is one of the algorithm of global optimization, in the target of the strong of concavity of object function i.e. high of nonlinear risk of portfolio. Firstly, my target model is a mathematical optimization programming to … Read more