Tightness of a new and enhanced semidefinite relaxation for MIMO detection

In this paper, we consider a fundamental problem in modern digital communications known as multi-input multi-output (MIMO) detection, which can be formulated as a complex quadratic programming problem subject to unit-modulus and discrete argument constraints. Various semidefinite relaxation (SDR) based algorithms have been proposed to solve the problem in the literature. In this paper, we … Read more

Complex Number Formulation and Convex Relaxations for Aircraft Conflict Resolution

We present a novel complex number formulation along with tight convex relaxations for the aircraft conflict resolution problem. Our approach combines both speed and heading control and provides global optimality guarantees despite non-convexities in the feasible region. As a side result, we present a new characterization of the conflict separation condition in the form of … Read more

Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major … Read more

Open research areas in distance geometry

Distance Geometry is based on the inverse problem that asks to find the positions of points, in a Euclidean space of given dimension, that are compatible with a given set of distances. We briefly introduce the field, and discuss some open and promising research areas. ArticleDownload View PDF

New error measures and methods for realizing protein graphs from distance data

The interval Distance Geometry Problem (iDGP) consists in finding a realization in R^K of a simple undirected graph G=(V,E) with nonnegative intervals assigned to the edges in such a way that, for each edge, the Euclidean distance between the realization of the adjacent vertices is within the edge interval bounds. Our aim is to determine … Read more

Global optimal control with the direct multiple shooting method

We propose to solve global optimal control problems with a new algorithm that is based on Bock’s direct multiple shooting method. We provide conditions and numerical evidence for a significant overall runtime reduction compared to the standard single shooting approach. CitationOptimal Control Applications and Methods, Vol. 39 (2), pp. 449–470, 2017 DOI 10.1002/oca.2324 Article online … Read more

Globally Optimized Finite Packings of Arbitrary Size Spheres in R^d

This work discusses the following general packing problem-class: given a finite collection of d-dimensional spheres with arbitrarily chosen radii, find the smallest sphere in R^d that contains the entire collection of these spheres in a non-overlapping arrangement. Generally speaking, analytical solution approaches cannot be expected to apply to this general problem-type, except for very small … Read more

Nonlinear Regression Analysis by Global Optimization: A Case Study in Space Engineering

The search for a better understanding of complex systems calls for quantitative model development. Within this development process, model fitting to observational data (calibration) often plays an important role. Traditionally, local optimization techniques have been applied to solve nonlinear (as well as linear) model calibration problems numerically: the limitations of such approaches in the nonlinear … Read more

Optimized Ellipse Packings in Regular Polygons Using Embedded Lagrange Multipliers

In this work, we present model development and numerical solution approaches to the general problem of packing a collection of ellipses into an optimized regular polygon. Our modeling and solution strategy is based on the concept of embedded Lagrange multipliers. This concept is applicable to a wide range of optimization problems in which explicit analytical … Read more

Mixed Integer Programming for the Global Solution of the Economic Load Dispatch Problem With Valve-Point Effect

Optimal distribution of power among generating units to meet a specific demand subject to system constraints is an ongoing research topic in the power system community. The problem, even in a static setting, turns out to be hard to solve with conventional optimization methods owing to the consideration of valve-point effects, which make the cost … Read more