Sparse Polynomial Optimization with Unbounded Sets

This paper considers sparse polynomial optimization with unbounded sets. When the problem possesses correlative sparsity, we propose a sparse homogenized Moment-SOS hierarchy with perturbations to solve it. The new hierarchy introduces one extra auxiliary variable for each variable clique according to the correlative sparsity pattern. Under the running intersection property, we prove that this hierarchy … Read more

Solving moment and polynomial optimization problems on Sobolev spaces

Using standard tools of harmonic analysis, we state and solve the problem of moments for positive measures supported on the unit ball of a Sobolev space of multivariate periodic trigonometric functions. We describe outer and inner semidefinite approximations of the cone of Sobolev moments. They are the basic components of an infinite-dimensional moment-sums of squares … Read more

A Cutting-Plane Global Optimization Algorithm for a Special Non-Convex Problem

This study establishes the convergence of a cutting-plane algorithm tailored for a specific non-convex optimization problem. The presentation begins with the problem definition, accompanied by the necessary hypotheses that substantiate the application of a cutting plane. Following this, we develop an algorithm designed to tackle the problem. Lastly, we provide a demonstration that the sequence … Read more

Computing an approximation of the nondominated set of multi-objective mixed-integer nonlinear optimization problems

In practical applications, one often has not only one, but several objectives that need to be optimized simultaneously. What is more, modeling such real world problems usually involves using both, continuous and integer variables. This then results in multi-objective mixed-integer optimization problems, which are in focus of this paper. We present an approximation concept, called … Read more

Exact Matrix Completion via High-Rank Matrices in Sum-of-Squares Relaxations

We study exact matrix completion from partially available data with hidden connectivity patterns. Exact matrix completion was shown to be possible recently by Cosse and Demanet in 2021 with Lasserre’s relaxation using the trace of the variable matrix as the objective function with given data structured in a chain format. In this study, we introduce … Read more

The limitation of neural nets for approximation and optimization

We are interested in assessing the use of neural networks as surrogate models to approximate and minimize objective functions in optimization problems. While neural networks are widely used for machine learning tasks such as classification and regression, their application in solving optimization problems has been limited. Our study begins by determining the best activation function … Read more

Solving Nonconvex Optimization Problems using Outer Approximations of the Set-Copositive Cone

We consider the solution of nonconvex quadratic optimization problems using an outer approximation of the set-copositive cone that is iteratively strengthened with conic constraints and cutting planes. Our methodology utilizes an MILP-based oracle for a generalization of the copositive cone that considers additional linear equality constraints. In numerical testing we evaluate our algorithm on a … Read more

Cone product reformulation for global optimization

In this paper, we study nonconvex optimization problems involving sum of linear times convex (SLC) functions as well as conic constraints belonging to one of the five basic cones, that is, linear cone, second order cone, power cone, exponential cone, and semidefinite cone. By using the Reformulation Perspectification Technique, we can obtain a convex relaxation … Read more

A real moment-HSOS hierarchy for complex polynomial optimization with real coefficients

This paper proposes a real moment-HSOS hierarchy for complex polynomial optimization problems with real coefficients. We show that this hierarchy provides the same sequence of lower bounds as the complex analogue, yet is much cheaper to solve. In addition, we prove that global optimality is achieved when the ranks of the moment matrix and certain … Read more

Convex envelopes of bounded monomials on two-variable cones

\(\) We consider an \(n\)-variate monomial function that is restricted both in value by lower and upper bounds and in domain by two homogeneous linear inequalities. Such functions are building blocks of several problems found in practical applications, and that fall under the class of Mixed Integer Nonlinear Optimization. We show that the upper envelope … Read more