Maximal Covering Location Problems on networks with regional demand

Covering problems are well studied in the Operations Research literature under the assumption that both the set of users and the set of potential facilities are finite. In this paper we address the following variant, which leads to a Mixed Integer Nonlinear Program (MINLP): locations of p facilities are sought along the edges of a … Read more

RBFOpt: an open-source library for black-box optimization with costly function evaluations

We consider the problem of optimizing an unknown function given as an oracle over a mixed-integer box-constrained set. We assume that the oracle is expensive to evaluate, so that estimating partial derivatives by finite differences is impractical. In the literature, this is typically called a black-box optimization problem with costly evaluation. This paper describes the … Read more

On a nonconvex MINLP formulation of the Euclidean Steiner tree problems in n-space

The Euclidean Steiner Tree Problem in dimension greater than two is notoriously difficult. The successful methods for exact solution are not based on mathematical-optimization methods — rather, they involve very sophisticated enumeration. There are two types of mathematical-optimization formulations in the literature, and it is an understatement to say that neither scales well enough to … Read more

A Feasible Direction Algorithm for Nonlinear Second-Order Cone Optimization Problems

In this work we present a new feasible direction algorithm for solving smooth nonlinear second-order cone programs. These problems consist of minimizing a nonlinear di erentiable objective function subject to some nonlinear second-order cone constraints. Given a point interior to the feasible set de nfined by the nonlinear constraints, the proposed approach computes a feasible and descent … Read more

Fast Algorithms for the Minimum Volume Estimator

The MVE estimator is an important tool in robust regression and outlier detection in statistics. We develop fast and efficient algorithms for the MVE estimator problem and discuss how they can be implemented efficiently. The novelty of our approach stems from the recent developments in the first-order algorithms for solving the related Minimum Volume Enclosing … Read more

Block stochastic gradient iteration for convex and nonconvex optimization

The stochastic gradient (SG) method can minimize an objective function composed of a large number of differentiable functions, or solve a stochastic optimization problem, to a moderate accuracy. The block coordinate descent/update (BCD) method, on the other hand, handles problems with multiple blocks of variables by updating them one at a time; when the blocks … Read more

An improved algorithm for L2-Lp minimization problem

In this paper we consider a class of non-Lipschitz and non-convex minimization problems which generalize the L2−Lp minimization problem. We propose an iterative algorithm that decides the next iteration based on the local convexity/concavity/sparsity of its current position. We show that our algorithm finds an epsilon-KKT point within O(log(1/epsilon)) iterations. The same result is also … Read more

Coercive polynomials and their Newton polytopes

Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this article we analyze the coercivity on $\mathbb{R}^n$ of multivariate polynomials $f\in \mathbb{R}[x]$ in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on … Read more

Global Optimization via Slack Variables

This paper presents a method for finding global optima to constrained nonlinear programs via slack variables. The method only applies if all functions involved are of class C1 but without any further qualification on the types of constraints allowed; it proceeds by reformulating the given program into a bi-objective program that is then solved for … Read more

Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-type Constraints and a Regularization Method

Optimization problems with cardinality constraints are very dicult mathematical programs which are typically solved by global techniques from discrete optimization. Here we introduce a mixed-integer formulation whose standard relaxation still has the same solutions (in the sense of global minima) as the underlying cardinality-constrained problem; the relation between the local minima is also discussed in … Read more