Global optimization of pipe networks by the interval analysis approach: the Belgium network case

We show that global optimization techniques, based on interval analysis and constraint propagation, succeed in solving the classical problem of optimization of the Belgium gas network. CitationPublished as Inria Research report RR-7796, November 2011.ArticleDownload View PDF

Global Optimization of Mixed-Integer Quadratically-Constrained Quadratic Programs (MIQCQP) through Piecewise-Linear and Edge-Concave Relaxations

We propose a deterministic global optimization approach, whose novel contributions are rooted in the edge-concave and piecewise-linear underestimators, to address nonconvex mixed-integer quadratically-constrained quadratic programs (MIQCQP) to epsilon-global optimality. The facets of low-dimensional (n < 4) edge-concave aggregations dominating the termwise relaxation of MIQCQP are introduced at every node of a branch-and-bound tree. Concave multivariable ... Read more

An extension of the elimination method for a sparse SOS polynomial

We propose a method to reduce the sizes of SDP relaxation problems for a given polynomial optimization problem (POP). This method is an extension of the elimination method for a sparse SOS polynomial in [Kojima et al., Mathematical Programming] and exploits sparsity of polynomials involved in a given POP. In addition, we show that this … Read more

Approximate spectral factorization for design of efficient sub-filter sequences

A well-known approach to the design of computationally efficient filters is to use spectral factorization, i.e. a decomposition of a filter into a sequence of sub-filters. Due to the sparsity of the sub-filters, the typical processing speedup factor is within the range 1-10 in 2D, and for 3D it achieves 10-100. The design of such … Read more

Optimization over the Efficient Set of a Bicriteria Convex Programming Problem

The problem of optimizing a real function over the efficient set of a multiple objective programming problem arises in a variety of applications. In this article, we propose an outer approximation algorithm for maximizing a function $h(x) = \varphi(f(x))$ over the efficient set $X_E$ of the bi-criteria convex programming problem $ {\rm Vmin} \{f(x)=(f_1(x), f_2(x))^T … Read more

Welfare-Maximizing Correlated Equilibria using Kantorovich Polynomials with Sparsity

We propose an algorithm that computes the epsilon-correlated equilibria with global-optimal (i.e., maximum) expected social welfare for single stage polynomial games. We first derive an infinite-dimensional formulation of epsilon-correlated equilibria using Kantorovich polynomials and re-express it as a polynomial positivity constraint. In addition, we exploit polynomial sparsity to achieve a leaner problem formulation involving Sum-Of-Squares … Read more

An FPTAS for Optimizing a Class of Low-Rank Functions Over a Polytope

We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of nonlinear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme … Read more

Constrained Derivative-Free Optimization on Thin Domains

Many derivative-free methods for constrained problems are not efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties of improving feasibility. … Read more

Proximal point method on Finslerian manifolds and the “Effort Accuracy Trade off”

In this paper we consider minimization problems with constraints. We will show that if the set of constraints is a Finslerian manifold of non positive flag curvature, and the objective function is di fferentiable and satisfi es the property Kurdyka-Lojasiewicz, then the proximal point method is naturally extended to solve that class of problems. We will prove … Read more

A Python/C library for bound-constrained global optimization with continuous GRASP

This paper describes libcgrpp, a GNU-style dynamic shared Python/C library of the continuous greedy randomized adaptive search procedure (C-GRASP) for bound constrained global optimization. C-GRASP is an extension of the GRASP metaheuristic (Feo and Resende, 1989). After a brief introduction to C-GRASP, we show how to download, install, configure, and use the library through an … Read more