The Branch-and-Bound Tree Closure

This paper investigates the a-posteriori analysis of Branch-and-Bound (BB) trees to extract structural information about the feasible region of mixed-binary linear programs. We introduce three novel outer approximations of the feasible region, systematically constructed from a BB tree. These are: a tight formulation based on disjunctive programming, a branching-based formulation derived from the tree’s branching … Read more

Solving Multi-Follower Mixed-Integer Bilevel Problems with Binary Linking Variables

We study multi-follower bilevel optimization problems with binary linking variables where the second level consists of many independent integer-constrained subproblems. This problem class not only generalizes many classical interdiction problems but also arises naturally in many network design problems where the second-level subproblems involve complex routing decisions of the actors involved. We propose a novel … Read more

Polynomial-Time Algorithms for Setting Tight Big-M Coefficients in Transmission Expansion Planning with Disconnected Buses

The increasing penetration of renewable energy into power systems necessitates the development of effective methodologies to integrate initially disconnected generation sources into the grid. This paper introduces the Longest Shortest-Path-Connection (LSPC) algorithm, a graph-based method to enhance the mixed-integer linear programming disjunctive formulation of Transmission Expansion Planning (TEP) using valid inequalities (VIs). Traditional approaches for … Read more

Energy-efficient Timetables for Railway Traffic: Incorporating DC Power Models

Efficient operation of underground railway systems is critical not only for maintaining punctual service but also for minimizing energy consumption, a key factor in reducing operational costs and environmental impact. To evaluate the energy consumption of the timetables, this paper delves into the development of mathematical models to accurately represent energy dynamics within the underground … Read more

Optimizing with Column Generation: Advanced Branch-Cut-and-Price Algorithms (Part I)

We are excited to present the early release of Part I of our book “Optimizing with Column Generation: advanced Branch-Cut-and-Price Algorithms”. While the book’s ultimate goal, as suggested by its subtitle, is to describe cutting-edge techniques in these algorithms, this objective is primarily addressed in the forthcoming Part II. However, we feel that the completed … Read more

Machine Learning for Optimization-Based Separation: the Case of Mixed-Integer Rounding Cuts

Mixed-Integer Rounding (MIR) cuts are effective at improving the dual bound in Mixed-Integer Linear Programming (MIP). However, in practice, MIR cuts are separated heuristically rather than using optimization as the latter is prohibitively expensive. We present a hybrid cut generation framework in which we train a Machine Learning (ML) model to inform cut generation for … Read more

Incorporating Service Reliability in Multi-depot Vehicle Scheduling: A Chance-Constrained Approach

The multi-depot vehicle scheduling problem (MDVSP) is a critical planning challenge for transit agencies. We introduce a novel approach to MDVSP by incorporating service reliability through chance-constrained programming (CCP), targeting the pivotal issue of travel time uncertainty and its impact on transit service quality. Our model guarantees service reliability measured by on-time performance (OTP), a … Read more

New cuts and a branch-cut-and-price model for the Multi Vehicle Covering Tour Problem

The Multi-Vehicle Covering Tour Problem (m-CTP) involves a graph in which the set of vertices is partitioned into a depot and three distinct subsets representing customers, mandatory facilities, and optional facilities. Each customer is linked to a specific subset of optional facilities that define its coverage set. The goal is to determine a set of … Read more

Using Disjunctive Cuts in a Branch-and-Cut Method to Solve Convex Integer Nonlinear Bilevel Problems

We present a branch-and-cut method for solving convex integer nonlinear bilevel problems, i.e., bilevel models with nonlinear but jointly convex objective functions and constraints in both the upper and the lower level. To this end, we generalize the idea of using disjunctive cuts to cut off integer-feasible but bilevel-infeasible points. These cuts can be obtained … Read more

Set System Approximation for Binary Integer Programs: Reformulations and Applications

Covering and elimination inequalities are central to combinatorial optimization, yet their role has largely been studied in problem-specific settings or via no-good cuts. This paper introduces a unified perspective that treats these inequalities as primitives for set system approximation in binary integer programs (BIPs). We show that arbitrary set systems admit tight inner and outer … Read more