Single-neuron convexifications for binarized neural networks

Binarized neural networks are an important class of neural network in deep learning due to their computational efficiency. This paper contributes towards a better understanding of the structure of binarized neural networks, specifically, ideal convex representations of the activation functions used. We describe the convex hull of the graph of the signum activation function associated … Read more

Multilinear Sets with Two Monomials and Cardinality Constraints

Binary polynomial optimization is equivalent to the problem of minimizing a linear function over the intersection of the multilinear set with a polyhedron. Many families of valid inequalities for the multilinear set are available in the literature, though giving a polyhedral characterization of the convex hull is not tractable in general as binary polynomial optimization … Read more

Total Coloring and Total Matching: Polyhedra and Facets

A total coloring of a graph G = (V, E) is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive different colors. Any valid total coloring induces a partition of the … Read more

Total Coloring and Total Matching: Polyhedra and Facets

A total coloring of a graph G = (V, E) is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive a different color. Any valid total coloring induces a partition of … Read more

A Separation Algorithm for the Simple Plant Location Problem

The Simple Plant Location Problem (SPLP) is a well-known NP-hard optimisation problem with applications in logistics. Although many families of facet-defining inequalities are known for the associated polyhedron, very little work has been done on separation algorithms. We present the first ever polynomial-time separation algorithm for the SPLP that separates exactly over an exponentially large … Read more

On Convex Lower-Level Black-Box Constraints in Bilevel Optimization with an Application to Gas Market Models with Chance Constraints

Bilevel optimization is an increasingly important tool to model hierarchical decision making. However, the ability of modeling such settings makes bilevel problems hard to solve in theory and practice. In this paper, we add on the general difficulty of this class of problems by further incorporating convex black-box constraints in the lower level. For this … Read more

A Computational Study of Perspective Cuts

The benefits of cutting planes based on the perspective function are well known for many specific classes of mixed-integer nonlinear programs with on/off structures. However, we are not aware of any empirical studies that evaluate their applicability and computational impact over large, heterogeneous test sets in general-purpose solvers. This paper provides a detailed computational study … Read more

Cutting Plane Generation Through Sparse Principal Component Analysis

Quadratically-constrained quadratic programs (QCQPs) are optimization models whose remarkable expressiveness has made them a cornerstone of methodological research for nonconvex optimization problems. However, modern methods to solve a general QCQP fail to scale, encountering computational challenges even with just a few hundred variables. Specifically, a semidefinite programming (SDP) relaxation is typically employed, which provides strong … Read more

Multi-market Portfolio Optimization with Conditional Value at Risk

In this paper we propose an optimization framework for multi-markets portfolio management, where a central headquarter relies upon local affiliates for the market-wise selection of investment options. Being averse to risk, the headquarter endogenously selects the maximum expected loss (conditional value at risk) for the affiliates, who respond designing portfolios and selecting management fees. In … Read more

Face Dimensions of General-Purpose Cutting Planes for Mixed-Integer Linear Programs

Cutting planes are a key ingredient to successfully solve mixed-integer linear programs. For specific problems, their strength is often theoretically assessed by showing that they are facet-defining for the corresponding mixed-integer hull. In this paper we experimentally investigate the dimensions of faces induced by general-purpose cutting planes generated by a state-of-the-art solver. Therefore, we relate … Read more