Another pedagogy for mixed-integer Gomory

We present a version of GMI (Gomory mixed-integer) cuts in a way so that they are derived with respect to a “dual form” mixed-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. This follows the general scheme of He and Lee, who did the case of Gomory … Read more

Rank aggregation in cyclic sequences

In this paper we propose the problem of finding the cyclic sequence which best represents a set of cyclic sequences. Given a set of elements and a precedence cost matrix we look for the cyclic sequence of the elements which is at minimum distance from all the ranks when the permutation metric distance is the … Read more

On Solving General Two-Stage Stochastic Programs

We study general two-stage stochastic programs and present conditions under which the second stage programs can be convexified. This allows us to relax the restrictions, such as integrality, binary, semi-continuity, and many others, on the second stage variables in certain situations. Next, we introduce two-stage stochastic disjunctive programs (TSS-DPs) and extend Balas’s linear programming equivalent … Read more

Combinatorial Optimal Control of Semilinear Elliptic PDEs

Optimal control problems (OCP) containing both integrality and partial differential equation (PDE) constraints are very challenging in practice. The most wide-spread solution approach is to first discretize the problem, it results in huge and typically nonconvex mixed-integer optimization problems that can be solved to proven optimality only in very small dimensions. In this paper, we … Read more

An improved DSATUR-based Branch and Bound for the Vertex Coloring Problem

Given an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to each vertex of the graph in such a way that two adjacent vertices do not share the same color and the total number of colors is minimized. DSATUR based Branch and Bound (DSATUR) is an effective exact algorithm for the … Read more

A Cutting Plane Method for Risk-constrained Traveling Salesman Problem with Random Arc Costs

This paper considers the risk-constrained stochastic traveling salesman problem with random arc costs. In the context of stochastic arc costs, the deterministic traveling salesman problem’s optimal solutions would be ineffective because the selected route might be exposed to a greater risk where the actual cost can exceed the resource limit in extreme scenarios. We present … Read more

New Formulation and Strong MISOCP Relaxations for AC Optimal Transmission Switching Problem

As the modern transmission control and relay technologies evolve, transmission line switching has become an important option in power system operators’ toolkits to reduce operational cost and improve system reliability. Most recent research has relied on the DC approximation of the power flow model in the optimal transmission switching problem. However, it is known that … Read more

Extended Formulations for Vertex Cover

The vertex cover polytopes of graphs do not admit polynomial-size extended formulations. This motivates the search for polyhedral analogues to approximation algorithms and fixed-parameter tractable (FPT) algorithms. While the polyhedral approximability of vertex cover has been studied, we know of no extended formulations parameterized by the size of the vertex cover. To this end, we … Read more

Stochastically Constrained Simulation Optimization On Integer-Ordered Spaces: The cgR-SPLINE Algorithm

We consider the problem of identifying the solution(s) to an optimization problem whose domain is a subset of the integer lattice, and whose objective and constraint functions can only be observed using a stochastic simulation. Such problems seem particularly prevalent (see www.simopt.org) within service systems having capacity or service-level constraints. We present cgR-SPLINE — a … Read more