Dippy — a simplified interface for advanced mixed-integer programming

Mathematical modelling languages such as AMPL, GAMS, and Xpress-MP enable mathematical models such as mixed-integer linear programmes (MILPs) to be expressed clearly for solution in solvers such as CPLEX, MINOS and Gurobi. However some models are sufficiently difficult that they cannot be solved using “out-of-the-box” solvers, and customisation of the solver framework to exploit model-specific … Read more

A compact variant of the QCR method for quadratically constrained quadratic 0-1 programs

Quadratic Convex Reformulation (QCR) is a technique that was originally proposed for quadratic 0-1 programs, and then extended to various other problems. It is used to convert non-convex instances into convex ones, in such a way that the bound obtained by solving the continuous relaxation of the reformulated instance is as strong as possible. In … Read more

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem with Symmetry

Given an undirected graph and a positive integer k, the maximum k-colorable subgraph problem consists of selecting a k-colorable induced subgraph of maximum cardinality. The natural integer programming formulation for this problem exhibits two kinds of symmetry: arbitrarily permuting the color classes and/or applying a non-trivial graph automorphism gives equivalent solutions. It is well known … Read more

On the hyperplanes arrangements in mixed-integer techniques

This paper is concerned with the improved constraints handling in mixed-integer optimization problems. The novel element is the reduction of the number of binary variables used for expressing the complement of a convex (polytopic) region. As a generalization, the problem of representing the complement of a possibly non-connected union of such convex sets is detailed. … Read more

CONVEX HULL RELAXATION (CHR) FOR CONVEX AND NONCONVEX MINLP PROBLEMS WITH LINEAR CONSTRAINTS

The behavior of enumeration-based programs for solving MINLPs depends at least in part on the quality of the bounds on the optimal value and of the feasible solutions found. We consider MINLP problems with linear constraints. The convex hull relaxation (CHR) is a special case of the primal relaxation (Guignard 1994, 2007) that is very … Read more

A new, solvable, primal relaxation for convex nonlinear integer programming problems

The paper describes a new primal relaxation (PR) for computing bounds on nonlinear integer programming (NLIP) problems. It is a natural extension to NLIP problems of the geometric interpretation of Lagrangean relaxation presented by Geoffrion (1974) for linear problems, and it is based on the same assumption that some constraints are complicating and are treated … Read more

Combining QCR and CHR for Convex Quadratic MINLP Problems with Linear Constraints

The convex hull relaxation (CHR) method (Albornoz 1998, Ahlatçıoğlu 2007, Ahlatçıoğlu and Guignard 2010) provides lower bounds and feasible solutions (thus upper bounds) on convex 0-1 nonlinear programming problems with linear constraints. In the quadratic case, these bounds may often be improved by a preprocessing step that adds to the quadratic objective function terms which … Read more

A Probing Algorithm for MINLP with Failure Prediction by SVM

Bound tightening is an important component of algorithms for solving nonconvex Mixed Integer Nonlinear Programs. A {\em probing} algorithm is a bound-tightening procedure that explores the consequences of restricting a variable to a subinterval with the goal of tightening its bounds. We propose a variant of probing where exploration is based on iteratively applying a … Read more

New developments in the primal-dual column generation technique

The classical column generation is based on optimal solutions of the restricted master problems. This strategy frequently results in an unstable behaviour and may require an unnecessarily large number of iterations. To overcome this weakness, variations of the classical approach use interior points of the dual feasible set, instead of optimal solutions. In this paper, … Read more

Some Properties of Convex Hulls of Integer Points Contained in General Convex Sets

In this paper, we study properties of general closed convex sets that determine the closed-ness and polyhedrality of the convex hull of integer points contained in it. We first present necessary and sufficient conditions for the convex hull of integer points contained in a general convex set to be closed. This leads to useful results … Read more