Using dual relaxations in multiobjective mixed-integer quadratic programming

We present a branch-and-bound method for multiobjective mixed-integer convex quadratic programs that computes a superset of efficient integer assignments and a coverage of the nondominated set. The method relies on outer approximations of the upper image set of continuous relaxations. These outer approximations are obtained addressing the dual formulations of specific subproblems where the values … Read more

Mixed-Integer Programming for a Class of Robust Submodular Maximization Problems

\(\) We consider robust submodular maximization problems (RSMs), where given a set of \(m\) monotone submodular objective functions, the robustness is with respect to the worst-case (scaled) objective function. The model we consider generalizes two variants of robust submodular maximization problems in the literature, depending on the choice of the scaling vector. On one hand, by … Read more

Compressed Sensing: A Discrete Optimization Approach

We study the Compressed Sensing (CS) problem, which is the problem of finding the most sparse vector that satisfies a set of linear measurements up to some numerical tolerance. CS is a central problem in Statistics, Operations Research and Machine Learning which arises in applications such as signal processing, data compression, image reconstruction, and multi-label … Read more

Outlier detection in regression: conic quadratic formulations

In many applications, when building linear regression models, it is important to account for the presence of outliers, i.e., corrupted input data points. Such problems can be formulated as mixed-integer optimization problems involving cubic terms, each given by the product of a binary variable and a quadratic term of the continuous variables. Existing approaches in … Read more

Democratization of Complex-Problem Solving to Enhance Participation, Transparency, Accountability, and Fairness: An Optimization Perspective

Operations in critical areas of importance to society, such as healthcare, transportation and logistics, power systems, and emergency response, profoundly affect multiple stakeholders with diverse perspectives. These operations are often modeled using discrete programming methods to capture the various decision-making factors through centrally-selected objectives and constraints. Unfortunately, centralized modeling and solution methodologies may overlook the … Read more

Political districting to optimize the Polsby-Popper compactness score with application to voting rights

\(\)In the academic literature and in expert testimony, the Polsby-Popper score is the most popular way to measure the compactness of a political district. Given a district with area \(A\) and perimeter \(P\), its Polsby-Popper score is given by \( (4 \pi A)/P^2\). This score takes values between zero and one, with circular districts achieving … Read more

On the Partial Convexification of the Low-Rank Spectral Optimization: Rank Bounds and Algorithms

A Low-rank Spectral Optimization Problem (LSOP) minimizes a linear objective subject to multiple two-sided linear matrix inequalities intersected with a low-rank and spectral constrained domain set. Although solving LSOP is, in general, NP-hard, its partial convexification (i.e., replacing the domain set by its convex hull) termed “LSOP-R”, is often tractable and yields a high-quality solution. … Read more

When Deep Learning Meets Polyhedral Theory: A Survey

In the past decade, deep learning became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural networks in tasks such as computer vision and natural language processing. Meanwhile, the structure of neural networks converged back to simpler representations based on piecewise constant and piecewise linear functions such as the Rectified … Read more

Heuristic methods for noisy derivative-free bound-constrained mixed-integer optimization

This paper discusses MATRS, a new matrix adaptation trust region strategy for solving noisy derivative-free mixed-integer optimization problems with simple bounds.  MATRS repeatedly cycles through five phases, mutation, selection, recombination, trust-region, and mixed-integer in this order. But if in the mutation phase a new best point (point with lowest inexact function value among all evaluated … Read more

Optimal Planning for the Electrification of Bus Fleets in Public Transit Systems

Electric vehicles (EV) pave a promising way towards low-carbon transportation, but the transition to all EV fleets creates new challenges for the public transportation sector. Despite increasing adoption of electric buses, the main challenges presented by the battery electric bus technology include the lack of charging facilities, the reduced operating capacity per battery charge compared … Read more