Sparse multi-term disjunctive cuts for the epigraph of a function of binary variables

We propose a new method for separating valid inequalities for the epigraph of a function of binary variables. The proposed inequalities are disjunctive cuts defined by disjunctive terms obtained by enumerating a subset $I$ of the binary variables. We show that by restricting the support of the cut to the same set of variables $I$, … Read more

Schreier-Sims Cuts meet Stable Set: Preserving Problem Structure when Handling Symmetries

Symmetry handling inequalities (SHIs) are a popular tool to handle symmetries in integer programming. Despite their successful application in practice, only little is known about the interaction of SHIs with optimization problems. In this article, we focus on SST cuts, an attractive class of SHIs, and investigate their computational and polyhedral consequences for optimization problems. … Read more

On the Complexity of Separation From the Knapsack Polytope

We close three open problems in the separation complexity of valid inequalities for the knapsack polytope. Specifically, we establish that the separation problems for extended cover inequalities, (1,k)-configuration inequalities, and weight inequalities are all NP-complete. We also give a number of special cases where the separation problem can be solved in polynomial time. ArticleDownload View … Read more

On the Fairness of Aggregator’s Incentives in Residential Demand Response

The main motivation of this work is to provide an optimization-based tool for an aggregator involved in residential demand response (DR) programs. The proposed tool comply with the following requirements, which are widely accepted by the residential DR literature: (i) the aggregated consumption should be optimized under a particular utility’s target, such as the minimization … Read more

Exact Methods for Discrete Γ-Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem

Developing solution methods for discrete bilevel problems is known to be a challenging task – even if all parameters of the problem are exactly known. Many real-world applications of bilevel optimization, however, involve data uncertainty. We study discrete min-max problems with a follower who faces uncertainties regarding the parameters of the lower-level problem. Adopting a … Read more

Mixed-Integer Optimization with Constraint Learning

We establish a broad methodological foundation for mixed-integer optimization with learned constraints. We propose an end-to-end pipeline for data-driven decision making in which constraints and objectives are directly learned from data using machine learning, and the trained models are embedded in an optimization formulation. We exploit the mixed-integer optimization-representability of many machine learning methods, including … Read more

Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems

We consider mixed-integer linear quantile minimization problems that yield large-scale problems that are very hard to solve for real-world instances. We motivate the study of this problem class by two important real-world problems: a maintenance planning problem for electricity networks and a quantile-based variant of the classic portfolio optimization problem. For these problems, we develop … Read more

Simple odd beta-cycle inequalities for binary polynomial optimization

We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd beta-cycle inequalities valid for this polytope, showed that these generally have Chvátal rank 2 with respect to the standard relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle … Read more

Compact extended formulations for low-rank functions with indicator variables

We study the mixed-integer epigraph of a special class of convex functions with non-convex indicator constraints, which are often used to impose logical constraints on the support of the solutions. The class of functions we consider are defined as compositions of low-dimensional nonlinear functions with affine functions Extended formulations describing the convex hull of such … Read more

A Graph-based Decomposition Method for Convex Quadratic Optimization with Indicators

In this paper, we consider convex quadratic optimization problems with indicator variables when the matrix Q defining the quadratic term in the objective is sparse. We use a graphical representation of the support of Q, and show that if this graph is a path, then we can solve the associated problem in polynomial time. This … Read more