A Branch & Bound Algorithm for Robust Binary Optimization with Budget Uncertainty

Since its introduction in the early 2000s, robust optimization with budget uncertainty has received a lot of attention. This is due to the intuitive construction of the uncertainty sets and the existence of a compact robust reformulation for (mixed-integer) linear programs. However, despite its compactness, the reformulation performs poorly when solving robust integer problems due … Read more

An Overview of Nested Decomposition for Multi-Level Optimization Problems

Nested multi-level structures are frequently encountered in many real-world optimization problems. Decomposition techniques are a commonly applied approach used to handle nested multi-level structures; however, the typical problem-specific focus of such techniques has led to numerous specialized formulations and solution methods. This lack of generalized results for nested multi-level optimization problems is addressed in this … Read more

Efficient and Robust Mixed-Integer Optimization Methods for Training Binarized Deep Neural Networks

Compared to classical deep neural networks its binarized versions can be useful for applications on resource-limited devices due to their reduction in memory consumption and computational demands. In this work we study deep neural networks with binary activation functions and continuous or integer weights (BDNN). We show that the BDNN can be reformulated as a … Read more

A Theoretical and Computational Analysis of Full Strong-Branching

Full strong-branching (henceforth referred to as strong-branching) is a well-known variable selection rule that is known experimentally to produce significantly smaller branch-and-bound trees in comparison to all other known variable selection rules. In this paper, we attempt an analysis of the performance of the strong-branching rule both from a theoretical and a computational perspective. On … Read more

Complexity of optimizing over the integers

In the first part of this paper, we present a unified framework for analyzing the algorithmic complexity of any optimization problem, whether it be continuous or discrete in nature. This helps to formalize notions like “input”, “size” and “complexity” in the context of general mathematical optimization, avoiding context dependent definitions which is one of the … Read more

Feasible rounding approaches and diving strategies in branch-and-bound methods for mixed-integer optimization

In this paper, we study the behavior of feasible rounding approaches for mixed-integer linear and nonlinear optimization problems (MILP and MINLP, respectively) when integrated into tree search of branch-and-bound. Our research addresses two important aspects. First, we develop insights into how an (enlarged) inner parallel set, which is the main component for feasible rounding approaches, … Read more

An Improved Penalty Algorithm using Model Order Reduction for MIPDECO problems with partial observations

This work addresses optimal control problems governed by a linear time-dependent partial differential equation (PDE) as well as integer constraints on the control. Moreover, partial observations are assumed in the objective function. The resulting problem poses several numerical challenges due to the mixture of combinatorial aspects, induced by integer variables, and large scale linear algebra … Read more

On Polytopes with Linear Rank with respect to Generalizations of the Split Closure

In this paper we study the rank of polytopes contained in the 0-1 cube with respect to $t$-branch split cuts and $t$-dimensional lattice cuts for a fixed positive integer $t$. These inequalities are the same as split cuts when $t=1$ and generalize split cuts when $t > 1$. For polytopes contained in the $n$-dimensional 0-1 … Read more

Incorporating Holding Costs in Continuous-TimeService Network Design: New Model, Relaxation, and Exact Algorithm

The continuous-time service network design problem (CTSNDP) occurs widely in practice. It aims to minimize the total operational cost by optimizing the schedules of transportation services and the routes of shipments for dispatching, which can occur at any time point along a continuous planning horizon. In order to be cost effective, shipments often wait to … Read more

Presolving for Mixed-Integer Semidefinite Optimization

This paper provides a discussion and evaluation of presolving methods for mixed-integer semidefinite programs. We generalize methods from the mixed-integer linear case and introduce new methods that depend on the semidefinite condition. The considered methods include adding linear constraints, bounds relying on 2 × 2 minors of the semidefinite constraints, bound tightening based on solving … Read more