Classification with Guaranteed Probability of Error

We introduce a general-purpose learning machine that we call the “Guaranteed Error Machine”, or GEM, and two learning algorithms, a “real GEM algorithm” and an “ideal GEM algorithm”. The real GEM algorithm is for use in real applications, while the ideal GEM algorithm is introduced as a theoretical tool; however, these two algorithms have identical … Read more

On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean

In this paper we analyze the iteration-complexity of the hybrid proximal extragradient (HPE) method for finding a zero of a maximal monotone operator recently proposed by Solodov and Svaiter. One of the key points of our analysis is the use of new termination criteria based on the $\varepsilon$-enlargement of a maximal monotone operator. The advantage … Read more

A convex polynomial that is not sos-convex

A multivariate polynomial $p(x)=p(x_1,…,x_n)$ is sos-convex if its Hessian $H(x)$ can be factored as $H(x)= M^T(x) M(x)$ with a possibly nonsquare polynomial matrix $M(x)$. It is easy to see that sos-convexity is a sufficient condition for convexity of $p(x)$. Moreover, the problem of deciding sos-convexity of a polynomial can be cast as the feasibility of … Read more

Numerical block diagonalization of matrix hBcalgebras with application to semidefinite programming

Semidefinite programming (SDP) is one of the most active areas in mathematical programming, due to varied applications and the availability of interior point algorithms. In this paper we propose a new pre-processing technique for SDP instances that exhibit algebraic symmetry. We present computational results to show that the solution times of certain SDP instances may … Read more

Relating max-cut problems and binary linear feasibility problems

This paper explores generalizations of the Goemans-Williamson randomization technique. It establishes a simple equivalence of binary linear feasibility problems and max-cut problems and presents an analysis of the semidefinite max-cut relaxation for the case of a single linear equation. Numerical examples for feasible random binary problems indicate that the randomization technique is efficient when the … Read more

User’s Manual for SparseCoLO: Conversion Methods for Sparse Conic-form Linear Optimization Problems

SparseCoLO is a Matlab package for implementing the four conversion methods, proposed by Kim, Kojima, Mevissen, and Yamashita, via positive semidefinite matrix completion for an optimization problem with matrix inequalities satisfying a sparse chordal graph structure. It is based on quite a general description of optimization problem including both primal and dual form of linear, … Read more

High accuracy semidefinite programming bounds for kissing numbers

The kissing number in n-dimensional Euclidean space is the maximal number of non-overlapping unit spheres which simultaneously can touch a central unit sphere. Bachoc and Vallentin developed a method to find upper bounds for the kissing number based on semidefinite programming. This paper is a report on high accuracy calculations of these upper bounds for … Read more

A New Relaxation Framework for Quadratic Assignment Problems based on Matrix Splitting

Quadratic assignment problems (QAPs) are among the hardest discrete optimization problems. Recent study shows that even obtaining a strong lower bound for QAPs is a computational challenge. In this paper, we first discuss how to construct new simple convex relaxations of QAPs based on various matrix splitting schemes. Then we introduce the so-called symmetric mappings … Read more

Free Material Optimization with Fundamental Eigenfrequency Constraints.

The goal of this paper is to formulate and solve free material optimization problems with constraints on the smallest eigenfrequency of the optimal structure. A natural formulation of this problem as linear semidefinite program turns out to be numerically intractable. As an alternative, we propose a new approach, which is based on a nonlinear semidefinite … Read more

A Nonstandard Simplex Algorithm for Linear Programming

The simplex algorithm travels, on the underlying polyhedron, from vertex to vertex until reaching an optimal vertex. With the same simplex framework, the proposed algorithm generates a series of feasible points (which are not necessarily vertices). In particular, it is exactly an interior point algorithm if the initial point used is interior. Computational experiments show … Read more