Copositivity cuts for improving SDP bounds on the clique number

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound on the clique number and its tightening introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of previously established semidefinite programming bound hierarchies rapidly increases … Read more

Polytopes and Arrangements : Diameter and Curvature

We introduce a continuous analogue of the Hirsch conjecture and a discrete analogue of the result of Dedieu, Malajovich and Shub. We prove a continuous analogue of the result of Holt and Klee, namely, we construct a family of polytopes which attain the conjectured order of the largest total curvature. Citation AdvOL-Report #2006/09 Advanced Optimization … Read more

Approximating the Radii of Point Sets

We consider the problem of computing the outer-radii of point sets. In this problem, we are given integers $n, d, k$ where $k \le d$, and a set $P$ of $n$ points in $R^d$. The goal is to compute the {\em outer $k$-radius} of $P$, denoted by $\kflatr(P)$, which is the minimum, over all $(d-k)$-dimensional … Read more

A Path to the Arrow-Debreu Competitive Market Equilibrium

We present polynomial-time interior-point algorithms for solving the Fisher and Arrow-Debreu competitive market equilibrium problems with linear utilities and $n$ players. Both of them have the arithmetic operation complexity bound of $O(n^4\log(1/\epsilon))$ for computing an $\epsilon$-equilibrium solution. If the problem data are rational numbers and their bit-length is $L$, then the bound to generate an … Read more

Semidefinite Programming Based Algorithms for Sensor Network Localization

An SDP relaxation based method is developed to solve the localization problem in sensor networks using incomplete and inaccurate distance information. The problem is set up to find a set of sensor positions such that given distance constraints are satisfied. The nonconvex constraints in the formulation are then relaxed in order to yield a semidefinite … Read more

Theory of Semidefinite Programming for Sensor Network Localization

We analyze the semidefinite programming (SDP) based model and method for the position estimation problem in sensor network localization and other Euclidean distance geometry applications. We use SDP duality and interior–point algorithm theories to prove that the SDP localizes any network or graph that has unique sensor positions to fit given distance measures. Therefore, we … Read more

Static-arbitrage bounds on the prices of basket options via linear programming

We show that the problem of computing sharp upper and lower static-arbitrage bounds on the price of a European basket option, given the prices of other similar options, can be cast as a linear program (LP). The LP formulations readily yield super-replicating (sub-replicating) strategies for the upper (lower) bound problem. The dual counterparts of the … Read more

On the Convergence of the Entropy-Exponential Penalty Trajectories and Generalized Proximal Point Methods in Semidefinite Optimization

The convergence of primal and dual central paths associated to entropy and exponential functions, respectively, for semidefinite programming problem are studied in this paper. As an application, the proximal point method with the Kullback-Leibler distance applied to semidefinite programming problems is considered, and the convergence of primal and dual sequences is proved. CitationJournal of Global … Read more

Sum of Squares Method for Sensor Network Localization

We formulate the sensor network localization problem as finding the global minimizer of a quartic polynomial. Then sum of squares (SOS) relaxations can be applied to solve it. However, the general SOS relaxations are too expensive to implement for large problems. Exploiting the special features of this polynomial, we propose a new structured SOS relaxation, … Read more

An Extension of a Minimax Approach to Multiple Classification

When the mean vectors and the covariance matrices of two classes are available in a binary classification problem, Lanckriet et al.\ \cite{mpm} propose a minimax approach for finding a linear classifier which minimizes the worst-case (maximum) misclassification probability. We extend the minimax approach to a multiple classification problem, where the number $m$ of classes could … Read more