Moment-sos and spectral hierarchies for polynomial optimization on the sphere and quantum de Finetti theorems

We revisit the convergence analysis of two approximation hierarchies for polynomial optimization on the unit sphere. The first one is based on the moment-sos approach and gives semidefinite bounds for which Fang and Fawzi (2021) showed an analysis in \(O(1/r^2)\) for the r-th level bound, using the polynomial kernel method. The second hierarchy was recently … Read more

An extension of an interior-point method to include risk aversion in large-scale multistage stochastic optimization

In the earlier paper “On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach, European Journal of Operational Research, 310 (2023), 268–285” the authors presented a novel approach based on a specialized interior-point method (IPM) for solving (risk neutral) large-scale multistage stochastic optimization problems. The method computed the Newton direction by combining … Read more

Extracting Alternative Solutions from Benders Decomposition

We show how to extract alternative solutions for optimization problems solved by Benders Decom- position. In practice, alternative solutions provide useful insights for complex applications; some solvers do support generation of alternative solutions but none appear to support such generation when using Benders Decomposition. We propose a new post-processing method that extracts multiple optimal and … Read more

A user manual for cuHALLaR: A GPU accelerated low-rank semidefinite programming Solver

We present a Julia-based interface to the precompiled HALLaR and cuHALLaR binaries for large-scale semidefinite programs (SDPs). Both solvers are established as fast and numerically stable, and accept problem data in formats compatible with SDPA and a new enhanced data format taking advantage of Hybrid Sparse Low-Rank (HSLR) structure. The interface allows users to load … Read more

Inspection Games with Incomplete Information and Heterogeneous Resources

We study a two-player zero-sum inspection game with incomplete information, where an inspector deploys resources to maximize the expected damage value of detected illegal items hidden by an adversary across capacitated locations. Inspection and illegal resources differ in their detection capabilities and damage values. Both players face uncertainty regarding each other’s available resources, modeled via … Read more

On Parametric Linear Programming Duality

Recognizing the strength of parametric optimization to model uncertainty, we extend the classical linear programming duality theory to a parametric setting. For linear programs with parameters in general locations, we prove parametric weak and strong duality theorems and parametric complementary slackness theorems. ArticleDownload

A Randomized Algorithm for Sparse PCA based on the Basic SDP Relaxation

Sparse Principal Component Analysis (SPCA) is a fundamental technique for dimensionality reduction, and is NP-hard. In this paper, we introduce a randomized approximation algorithm for SPCA, which is based on the basic SDP relaxation. Our algorithm has an approximation ratio of at most the sparsity constant with high probability, if called enough times. Under a … Read more

Maximal entropy in the moment body

A moment body is a linear projection of the spectraplex, the convex set of trace-one positive semidefinite matrices. Determining whether a given point lies within a given moment body is a problem with numerous applications in quantum state estimation or polynomial optimization. This moment body membership oracle can be addressed with semidefinite programming, for which … Read more

Efficient QUIC-Based Damped Inexact Iterative Reweighting for Sparse Inverse Covariance Estimation with Nonconvex Partly Smooth Regularization

In this paper, we study sparse inverse covariance matrix estimation incorporating partly smooth nonconvex regularizers. To solve the resulting regularized log-determinant problem, we develop DIIR-QUIC—a novel Damped Inexact Iteratively Reweighted algorithm based on QUadratic approximate Inverse Covariance (QUIC) method. Our approach generalizes the classic iteratively reweighted \(\ell_1\) scheme through damped fixed-point updates. A key novelty … Read more

Dual certificates of primal cone membership

We discuss easily verifiable cone membership certificates, that is, certificates proving relations of the form \( b\in K \) for convex cones \(K\) that consist of vectors in the dual cone \(K^*\). Vectors in the dual cone are usually associated with separating hyperplanes, and so they are interpreted as certificates of non-membership in the standard … Read more