Inexact subgradient algorithm with a non-asymptotic convergence guarantee for copositive programming problems

In this paper, we propose a subgradient algorithm with a non-asymptotic convergence guarantee to solve copositive programming problems. The subproblem to be solved at each iteration is a standard quadratic programming problem, which is NP-hard in general. However, the proposed algorithm allows this subproblem to be solved inexactly. For a prescribed accuracy $\epsilon > 0$ … Read more

A Practical Adaptive Subgame Perfect Gradient Method

We present a performant gradient method for smooth convex optimization, drawing inspiration from several recent advances in the field. Our algorithm, the Adaptive Subgame Perfect Gradient Method (ASPGM) is based on the notion of subgame perfection, attaining a dynamic strengthening of minimax optimality. At each iteration, ASPGM makes a momentum-type update, optimized dynamically based on … Read more

Convexification of a Separable Function over a Polyhedral Ground Set

In this paper, we study the set \(\mathcal{S}^\kappa = \{ (x,y)\in\mathcal{G}\times\mathbb{R}^n : y_j = x_j^\kappa , j=1,\dots,n\}\), where \(\kappa > 1\) and the ground set \(\mathcal{G}\) is a nonempty polytope contained in \( [0,1]^n\). This nonconvex set is closely related to separable standard quadratic programming and appears as a substructure in potential-based network flow problems … Read more

Optimization in Theory and Practice

Algorithms for continuous optimization problems have a rich history of design and innovation over the past several decades, in which mathematical analysis of their convergence and complexity properties plays a central role. Besides their theoretical properties, optimization algorithms are interesting also for their practical usefulness as computational tools for solving real-world problems. There are often … Read more

Moment-sos and spectral hierarchies for polynomial optimization on the sphere and quantum de Finetti theorems

We revisit the convergence analysis of two approximation hierarchies for polynomial optimization on the unit sphere. The first one is based on the moment-sos approach and gives semidefinite bounds for which Fang and Fawzi (2021) showed an analysis in \(O(1/r^2)\) for the r-th level bound, using the polynomial kernel method. The second hierarchy was recently … Read more

An extension of an interior-point method to include risk aversion in large-scale multistage stochastic optimization

In the earlier paper “On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach, European Journal of Operational Research, 310 (2023), 268–285” the authors presented a novel approach based on a specialized interior-point method (IPM) for solving (risk neutral) large-scale multistage stochastic optimization problems. The method computed the Newton direction by combining … Read more

Extracting Alternative Solutions from Benders Decomposition

We show how to extract alternative solutions for optimization problems solved by Benders Decom- position. In practice, alternative solutions provide useful insights for complex applications; some solvers do support generation of alternative solutions but none appear to support such generation when using Benders Decomposition. We propose a new post-processing method that extracts multiple optimal and … Read more

A user manual for cuHALLaR: A GPU accelerated low-rank semidefinite programming Solver

We present a Julia-based interface to the precompiled HALLaR and cuHALLaR binaries for large-scale semidefinite programs (SDPs). Both solvers are established as fast and numerically stable, and accept problem data in formats compatible with SDPA and a new enhanced data format taking advantage of Hybrid Sparse Low-Rank (HSLR) structure. The interface allows users to load … Read more

Inspection Games with Incomplete Information and Heterogeneous Resources

We study a two-player zero-sum inspection game with incomplete information, where an inspector deploys resources to maximize the expected damage value of detected illegal items hidden by an adversary across capacitated locations. Inspection and illegal resources differ in their detection capabilities and damage values. Both players face uncertainty regarding each other’s available resources, modeled via … Read more

On Parametric Linear Programming Duality

Recognizing the strength of parametric optimization to model uncertainty, we extend the classical linear programming duality theory to a parametric setting. For linear programs with parameters in general locations, we prove parametric weak and strong duality theorems and parametric complementary slackness theorems. ArticleDownload