Weak notions of nondegeneracy in nonlinear semidefinite programming

The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, $\ell$-dimensional kernel of the constraint matrix, by the linear independence of a set of $\ell(\ell+1)/2$ derivative vectors. We show that this … Read more

Error bounds, facial residual functions and applications to the exponential cone

We construct a general framework for deriving error bounds for conic feasibility problems. In particular, our approach allows one to work with cones that fail to be amenable or even to have computable projections, two previously challenging barriers. For the purpose, we first show how error bounds may be constructed using objects called one-step facial … Read more

Learning To Scale Mixed-Integer Programs

Many practical applications require the solution of numerically challenging linear programs (LPs) and mixed-integer programs (MIPs). Scaling is a widely used preconditioning technique that aims at reducing the error propagation of the involved linear systems, thereby improving the numerical behavior of the dual simplex algorithm and, consequently, LP-based branch-and-bound. A reliable scaling method often makes … Read more

A New Dual Face Algorithm Using LU Factorization for Linear Programming

The dual face algorithm for linear programming (LP) was proposed by the author in 2014. Using QR factorization, it proceeds from dual face to dual face, until reaching an optimal dual face along with dual and primal optimal solutions, unless detecting infeasibility of the problem. On the other hand, a variant of the algorithm using … Read more

User manual of NewtBracket: “A Newton-Bracketing method for a simple conic optimization problem” with applications to QOPs in binary variables

We describe the Matlab package NewtBracket for solving a simple conic optimization problem that minimizes a linear objective function subject to a single linear equality constraint and a convex cone constraint. The problem is converted into the problem of finding the largest zero $y^*$ of a continuously differentiable (except at $y^*$) convex function $g : … Read more

Safely Learning Dynamical Systems from Short Trajectories

A fundamental challenge in learning to control an unknown dynamical system is to reduce model uncertainty by making measurements while maintaining safety. In this work, we formulate a mathematical definition of what it means to safely learn a dynamical system by sequentially deciding where to initialize the next trajectory. In our framework, the state of … Read more

Affine Decision Rule Approximation to Immunize against Demand Response Uncertainty in Smart Grids’ Capacity Planning

Generation expansion planning (GEP) is a classical problem that determines an optimal investment plan for existing and future electricity generation technologies. GEP is a computationally challenging problem, as it typically corresponds to a very large-scale problem that contains several sources of uncertainties. With the advent of demand response (DR) as a reserved capacity in modern … Read more

Amenable cones are particularly nice

Amenability is a geometric property of convex cones that is stronger than facial exposedness and assists in the study of error bounds for conic feasibility problems. In this paper we establish numerous properties of amenable cones, and investigate the relationships between amenability and other properties of convex cones, such as niceness and projectional exposure. We … Read more

Simple Iterative Methods for Linear Optimization over Convex Sets

We give simple iterative methods for computing approximately optimal primal and dual solutions for the problem of maximizing a linear functional over a convex set $K$ given by a separation oracle. In contrast to prior work, our algorithms directly output primal and dual solutions and avoid a common requirement of binary search on the objective … Read more

A Geometric View of SDP Exactness in QCQPs and its Applications

Let S denote a subset of Rn defined by quadratic equality and inequality constraints and let S denote its projected semidefinite program (SDP) relaxation. For example, take S and S to be the epigraph of a quadratically constrained quadratic program (QCQP) and the projected epigraph of its SDP relaxation respectively. In this paper, we suggest … Read more