The Equivalence of Fourier-based and Wasserstein Metrics on Imaging Problems

We investigate properties of some extensions of a class of Fourier-based probability metrics, originally introduced to study convergence to equilibrium for the solution to the spatially homogeneous Boltzmann equation. At difference with the original one, the new Fourier-based metrics are well-defined also for probability distributions with different centers of mass, and for discrete probability measures … Read more

Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality

Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a … Read more

On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming

Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate … Read more

Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step

In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in the authors’ previous paper, which we denote ICGALP, that allows for errors in the computation of several important quantities. In particular this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion … Read more

Parametric analysis of conic linear optimization

This paper focuses on the parametric analysis of a conic linear optimization problem with respect to the perturbation of the objective function along many fixed directions. We introduce the concept of the primal and dual conic linear inequality representable sets, which is very helpful for converting the correlation of the parametric conic linear optimization problems … Read more

Towards practical generic conic optimization

Many convex optimization problems can be represented through conic extended formulations with auxiliary variables and constraints using only the small number of standard cones recognized by advanced conic solvers such as MOSEK 9. Such extended formulations are often significantly larger and more complex than equivalent conic natural formulations, which can use a much broader class … Read more

Disk matrices and the proximal mapping for the numerical radius

Optimal matrices for problems involving the matrix numerical radius often have fields of values that are disks, a phenomenon associated with partial smoothness. Such matrices are highly structured: we experiment in particular with the proximal mapping for the radius, which often maps n-by-n random matrix inputs into a particular manifold of disk matrices that has … Read more

Mining for diamonds – matrix generation algorithms for binary quadratically constrained quadratic problems

In this paper, we consider binary quadratically constrained quadratic problems and propose a new approach to generate stronger bounds than the ones obtained using the Semidefinite Programming relaxation. The new relaxation is based on the Boolean Quadric Polytope and is solved via a Dantzig-Wolfe Reformulation in matrix space. For block-decomposable problems, we extend the relaxation … Read more

Convex Hull Representations for Bounded Products of Variables

It is well known that the convex hull of {(x,y,xy)}, where (x,y) is constrained to lie in a box, is given by the Reformulation-Linearization Technique (RLT) constraints. Belotti et al. (2010) and Miller et al. (2011) showed that if there are additional upper and/or lower bounds on the product z=xy, then the convex hull can … Read more

2×2-convexifications for convex quadratic optimization with indicator variables

In this paper, we study the convex quadratic optimization problem with indicator variables. For the bivariate case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the bivariate case as a building block, we derive … Read more