Projection and rescaling algorithm for finding most interior solutions to polyhedral conic systems

We propose a simple projection and rescaling algorithm that finds {\em most interior} solutions to the pair of feasibility problems \[ \text{find} x\in L\cap \R^n_{+} \text{ and } \text{find} \; \hat x\in L^\perp\cap\R^n_{+}, \] where $L$ is a linear subspace of $\R^n$ and $L^\perp$ is its orthogonal complement. The algorithm complements a basic procedure that … Read more

A Combinatorial Cut-and-Lift Procedure with an Application to 0-1 Chance Constraints

Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0-1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a large range of … Read more

On optimality conditions for nonlinear conic programming

Sequential optimality conditions have played a major role in proving stronger global convergence results of numerical algorithms for nonlinear programming. Several extensions have been described in conic contexts, where many open questions have arisen. In this paper, we present new sequential optimality conditions in the context of a general nonlinear conic framework, which explains and … Read more

Near-optimal analysis of univariate moment bounds for polynomial optimization

We consider a recent hierarchy of upper approximations proposed by Lasserre (arXiv:1907.097784, 2019) for the minimization of a polynomial f over a compact set K⊆ℝn. This hierarchy relies on using the push-forward measure of the Lebesgue measure on K by the polynomial f and involves univariate sums of squares of polynomials with growing degrees 2r. … Read more

On Standard Quadratic Programs with Exact and Inexact Doubly Nonnegative Relaxations

The problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of … Read more

Computational study of a branching algorithm for the maximum k-cut problem

This work considers the graph partitioning problem known as maximum k-cut. It focuses on investigating features of a branch-and-bound method to efficiently obtain global solutions. An exhaustive experimental study is carried out for two main components of a branch-and-bound algorithm: computing bounds and branching strategies. In particular, we propose the use of a variable neighborhood … Read more

Sparse PSD approximation of the PSD cone

While semidefinite programming (SDP) problems are polynomially solvable in theory, it is often difficult to solve large SDP instances in practice. One technique to address this issue is to relax the global positive-semidefiniteness (PSD) constraint and only enforce PSD-ness on smaller k times k principal submatrices — we call this the sparse SDP relaxation. Surprisingly, … Read more

On convex hulls of epigraphs of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study sufficient conditions for a convex hull result that immediately implies that the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such … Read more

The maximum hBccolorable subgraph problem and related problems

The maximum $k$-colorable subgraph (M$k$CS) problem is to find an induced $k$-colorable subgraph with maximum cardinality in a given graph. This paper is an in-depth analysis of the M$k$CS problem that considers various semidefinite programming relaxations including their theoretical and numerical comparisons. To simplify these relaxations we exploit the symmetry arising from permuting the colors, … Read more