Strong global convergence properties of algorithms for nonlinear symmetric cone programming

Sequential optimality conditions have played a major role in proving strong global convergence properties of numerical algorithms for many classes of optimization problems. In particular, the way complementarity is dealt is fundamental to achieve a strong condition. Typically, one uses the inner product structure to measure complementarity, which gives a very general approach to a … Read more

On Rank-Monotone Graph Operations and Minimal Obstruction Graphs for the Lovász-Schrijver SDP Hierarchy

We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator LS_+, with a particular focus on finding and characterizing the smallest graphs with a given LS_+-rank (the least number of iterations of the LS_+ operator on the fractional stable set polytope to compute the stable set … Read more

QUBO Dual Bounds via SDP Plane Projection Method

In this paper, we present a new method to solve a certain type of Semidefinite Programming (SDP) problems. These types of SDPs naturally arise in the Quadratic Convex Reformulation (QCR) method and can be used to obtain dual bounds of Quadratic Unconstrained Binary Optimization (QUBO) problems. QUBO problems have recently become the focus of attention … Read more

Computational Guarantees for Restarted PDHG for LP based on “Limiting Error Ratios” and LP Sharpness

In recent years, there has been growing interest in solving linear optimization problems – or more simply “LP” – using first-order methods in order to avoid the costly matrix factorizations of traditional methods for huge-scale LP instances. The restarted primal-dual hybrid gradient method (PDHG) – together with some heuristic techniques – has emerged as a … Read more

On the Relation Between LP Sharpness and Limiting Error Ratio and Complexity Implications for Restarted PDHG

There has been a recent surge in development of first-order methods (FOMs) for solving huge-scale linear programming (LP) problems. The attractiveness of FOMs for LP stems in part from the fact that they avoid costly matrix factorization computation. However, the efficiency of FOMs is significantly influenced – both in theory and in practice – by … Read more

An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original … Read more

Distributionally robust optimization through the lens of submodularity

Distributionally robust optimization is used to solve decision making problems under adversarial uncertainty where the distribution of the uncertainty is itself ambiguous. In this paper, we identify a class of these instances that is solvable in polynomial time by viewing it through the lens of submodularity. We show that the sharpest upper bound on the … Read more

Exact Matrix Completion via High-Rank Matrices in Sum-of-Squares Relaxations

We study exact matrix completion from partially available data with hidden connectivity patterns. Exact matrix completion was shown to be possible recently by Cosse and Demanet in 2021 with Lasserre’s relaxation using the trace of the variable matrix as the objective function with given data structured in a chain format. In this study, we introduce … Read more

Budget-Constrained Maximization of “Cobb-Douglas with Linear Components” Utility Function

In what follows, we provide the demand analysis associated with budget-constrained linear utility maximization for each of several categories of goods, with the marginal rate of consumption expenditure-as a share of wealth- being a positive constant less than or equal to one. The marginal rate of consumption expenditure is endogenously determined, by a budget-constrained “Cobb-Douglas … Read more

Solving Nonconvex Optimization Problems using Outer Approximations of the Set-Copositive Cone

We consider the solution of nonconvex quadratic optimization problems using an outer approximation of the set-copositive cone that is iteratively strengthened with conic constraints and cutting planes. Our methodology utilizes an MILP-based oracle for a generalization of the copositive cone that considers additional linear equality constraints. In numerical testing we evaluate our algorithm on a … Read more