Dual optimal design and the Christoffel-Darboux polynomial

The purpose of this short note is to show that the Christoffel-Darboux polynomial, useful in approximation theory and data science, arises naturally when deriving the dual to the problem of semi-algebraic D-optimal experimental design in statistics. It uses only elementary notions of convex analysis. ArticleDownload View PDF

Learning Dynamical Systems with Side Information

We present a mathematical and computational framework for the problem of learning a dynamical system from noisy observations of a few trajectories and subject to side information. Side information is any knowledge we might have about the dynamical system we would like to learn besides trajectory data. It is typically inferred from domain-specific knowledge or … Read more

Matchings, hypergraphs, association schemes, and semidefinite optimization

We utilize association schemes to analyze the quality of semidefinite programming (SDP) based convex relaxations of integral packing and covering polyhedra determined by matchings in hypergraphs. As a by-product of our approach, we obtain bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman. We determine … Read more

Complexity Aspects of Local Minima and Related Notions

We consider the notions of (i) critical points, (ii) second-order points, (iii) local minima, and (iv) strict local minima for multivariate polynomials. For each type of point, and as a function of the degree of the polynomial, we study the complexity of deciding (1) if a given point is of that type, and (2) if … Read more

On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming

Second-order necessary optimality conditions for nonlinear conic programming problems that depend on a single Lagrange multiplier are usually built under nondegeneracy and strict complementarity. In this paper we establish a condition of such type for two classes of nonlinear conic problems, namely semidefinite and second-order cone programming, assuming Robinson’s constraint qualification and a generalized form … Read more

Necessary and sufficient conditions for rank-one generated cones

A closed convex conic subset $\cS$ of the positive semidefinite (PSD) cone is rank-one generated (ROG) if all of its extreme rays are generated by rank-one matrices. The ROG property of $\cS$ is closely related to the exactness of SDP relaxations of nonconvex quadratically constrained quadratic programs (QCQPs) related to $\cS$. We consider the case … Read more

Ideal formulations for constrained convex optimization problems with indicator variables.

Motivated by modern regression applications, in this paper, we study the convexification of a class of convex optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear non-separable objective, indicator variables, and combinatorial constraints. Specifically, we give … Read more

A simplified treatment of Ramana’s exact dual for semidefinite programming

In semidefinite programming the dual may fail to attain its optimal value and there could be a duality gap, i.e., the primal and dual optimal values may differ. In a striking paper, Ramana proposed a polynomial size extended dual that does not have these deficiencies and yields a number of fundamental results in complexity theory. … Read more

Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step

In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in the authors’ previous paper, which we denote ICGALP, that allows for errors in the computation of several important quantities. In particular this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion … Read more

Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality

Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a … Read more