Complex Matrix Decomposition and Quadratic Programming

This paper studies the possibilities of the Linear Matrix Inequality (LMI) characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real case analog, such studies were conducted in Sturm and Zhang in 2003. In this paper it is shown that stronger results can … Read more

Sparse Covariance Selection via Robust Maximum Likelihood Estimation

We address a problem of covariance selection, where we seek a trade-off between a high likelihood against the number of non-zero elements in the inverse covariance matrix. We solve a maximum likelihood problem with a penalty term given by the sum of absolute values of the elements of the inverse covariance matrix, and allow for … Read more

Analyticity of weighted central path and error bound for semidefinite programming

The purpose of this paper is two-fold. Firstly, we show that every Cholesky-based weighted central path for semidefinite programming is analytic under strict complementarity. This result is applied to homogeneous cone programming to show that the central paths defined by the known class of optimal self-concordant barriers are analytic in the presence of strictly complementary … Read more

Semidefinite Bounds for the Stability Number of a Graph via Sums of Squares of Polynomials

Lov\’ asz and Schrijver [1991] have constructed semidefinite relaxations for the stable set polytope of a graph $G=(V,E)$ by a sequence of lift-and-project operations; their procedure finds the stable set polytope in at most $\alpha(G)$ steps, where $\alpha(G)$ is the stability number of $G$. Two other hierarchies of semidefinite bounds for the stability number have … Read more

Semidefinite-Based Branch-and-Bound for Nonconvex Quadratic Programming

This paper presents a branch-and-bound algorithm for nonconvex quadratic programming, which is based on solving semidefinite relaxations at each node of the enumeration tree. The method is motivated by a recent branch-and-cut approach for the box-constrained case that employs linear relaxations of the first-order KKT conditions. We discuss certain limitations of linear relaxations when handling … Read more

The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications

For a locally optimal solution to the nonlinear semidefinite programming problem, under Robinson’s constraint qualification, the following conditions are proved to be equivalent: the strong second order sufficient condition and constraint nondegeneracy; the nonsingularity of Clarke’s Jacobian of the Karush-Kuhn-Tucker system; the strong regularity of the Karush-Kuhn-Tucker point; and others. CitationTechnical Report, Department of Mathematics, … Read more

Clustering via Minimum Volume Ellipsoids

We propose minimum volume ellipsoids (MVE) clustering as an alternate clustering technique to k-means clustering for Gaussian data points and explore its value and practicality. MVE clustering allocates data points into clusters that minimizes the total volumes of each cluster’s covering ellipsoids. Motivations for this approach include its scale-invariance, its ability to handle asymmetric and … Read more

An Explicit Semidefinite Characterization of Satisfiability for Tseitin Instances

This paper is concerned with the application of semidefinite programming to the satisfiability problem, and in particular with using semidefinite liftings to efficiently obtain proofs of unsatisfiability. We focus on the Tseitin satisfiability instances which are known to be hard for many proof systems. We present an explicit semidefinite programming problem with dimension linear in … Read more

Computing the stability number of a graph via linear and semidefinite programming

We study certain linear and semidefinite programming lifting approximation schemes for computing the stability number of a graph. Our work is based on, and refines De Klerk and Pasechnik’s approach to approximating the stability number via copositive programming (SIAM J. Optim. 12 (2002), 875–892). We provide a closed-form expression for the values computed by the … Read more

A NEW BARRIER FOR A CLASS OF SEMIDEFINITE PROBLEMS

We introduce a new barrier function to solve a class of Semidefinite Optimization Problems (SOP) with bounded variables. That class is motivated by some (SOP) as the minimization of the sum of the first few eigenvalues of symmetric matrices and graph partitioning problems. We study the primal-dual central path defined by the new barrier and … Read more