A Limited-Memory Quasi-Newton Algorithm for Bound-Constrained Nonsmooth Optimization

We consider the problem of minimizing a continuous function that may be nonsmooth and nonconvex, subject to bound constraints. We propose an algorithm that uses the L-BFGS quasi-Newton approximation of the problem’s curvature together with a variant of the weak Wolfe line search. The key ingredient of the method is an active-set selection strategy that … Read more

Unified approach for solving Box-Constrained models with continuous or discrete variables by Non monotonous Derivative Free Optimization techniques.

This paper describes a unified approach for solving Box-Constrained Optimization Problems (BCOP) in Euclidian spaces. The variables may be either continuous or discrete; in which case, they range on a grid of isolated points regularly spaced. For the continuous case, convergence is shown under standard assumptions; for the discrete case, slight modifications ensure that the … Read more

A recursive semi-smooth Newton method for linear complementarity problems

A primal feasible active set method is presented for finding the unique solution of a Linear Complementarity Problem (LCP) with a P-matrix, which extends the globally convergent active set method for strictly convex quadratic problems with simple bounds proposed by [P. Hungerlaender and F. Rendl. A feasible active set method for strictly convex problems with … Read more

Approximate norm descent methods for constrained nonlinear systems

We address the solution of convex-constrained nonlinear systems of equations where the Jacobian matrix is unavailable or its computation/storage is burdensome. In order to efficiently solve such problems, we propose a new class of algorithms which are “derivative-free” both in the computation of the search direction and in the selection of the steplength. Search directions … Read more

Second-order optimality and beyond: characterization and evaluation complexity in convexly-constrained nonlinear optimization

High-order optimality conditions for convexly-constrained nonlinear optimization problems are analyzed. A corresponding (expensive) measure of criticality for arbitrary order is proposed and extended to define high-order $\epsilon$-approximate critical points. This new measure is then used within a conceptual trust-region algorithm to show that, if derivatives of the objective function up to order $q \geq 1$ … Read more

A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization

In this paper, we describe a two-stage method for solving optimization problems with bound constraints. It combines the active-set estimate described in [Facchinei and Lucidi, 1995] with a modification of the non-monotone line search framework recently proposed in [De Santis et al., 2012]. In the first stage, the algorithm exploits a property of the active-set … Read more

Algorithms for stochastic optimization with expectation constraints

This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with an expectation constraint on either decision variables or problem parameters. We first present a new stochastic approximation (SA) type algorithm, namely the cooperative SA (CSA), to handle problems with the expectation constraint on devision variables. We show that … Read more

Evaluation complexity bounds for smooth constrained nonlinear optimization using scaled KKT conditions and high-order models

Evaluation complexity for convexly constrained optimization is considered and it is shown first that the complexity bound of $O(\epsilon^{-3/2})$ proved by Cartis, Gould and Toint (IMAJNA 32(4) 2012, pp.1662-1695) for computing an $\epsilon$-approximate first-order critical point can be obtained under significantly weaker assumptions. Moreover, the result is generalized to the case where high-order derivatives are … Read more

Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models

The evaluation complexity of general nonlinear, possibly nonconvex,constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an $\epsilon$-approximate first-order critical point of the problem can be computed in order $O(\epsilon^{1-2(p+1)/p})$ evaluations of the problem’s function and their first $p$ derivatives. This is achieved by using a two-phases algorithm inspired by Cartis, Gould, … Read more

Bound-constrained polynomial optimization using only elementary calculations

We provide a monotone non increasing sequence of upper bounds $f^H_k$ ($k\ge 1$) converging to the global minimum of a polynomial $f$ on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM … Read more