A Newton’s method for the continuous quadratic knapsack problem

We introduce a new efficient method to solve the continuous quadratic knapsack problem. This is a highly structured quadratic program that appears in different contexts. The method converges after O(n) iterations with overall arithmetic complexity O(n²). Numerical experiments show that in practice the method converges in a small number of iterations with overall linear complexity, … Read more

On valid inequalities for quadratic programming with continuous variables and binary indicators

In this paper we study valid inequalities for a fundamental set that involves a continuous vector variable x in [0,1]^n, its associated quadratic form x x’ and its binary indicators. This structure appears when deriving strong relaxations for mixed integer quadratic programs (MIQPs). We treat valid inequalities for this set as lifted from QPB, which … Read more

Learning Circulant Sensing Kernels

In signal acquisition, Toeplitz and circulant matrices are widely used as sensing operators. They correspond to discrete convolutions and are easily or even naturally realized in various applications. For compressive sensing, recent work has used random Toeplitz and circulant sensing matrices and proved their efficiency in theory, by computer simulations, as well as through physical … Read more

A Block Coordinate Descent Method for Regularized Multi-Convex Optimization with Applications to Nonnegative Tensor Factorization and Completion

This paper considers regularized block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables. We review some of its interesting examples and propose a generalized block coordinate descent method. (Using proximal updates, we further allow non-convexity over some blocks.) Under certain conditions, we show that … Read more

Bounds on Eigenvalues of Matrices Arising from Interior-Point Methods

Interior-point methods feature prominently among numerical methods for inequality-constrained optimization problems, and involve the need to solve a sequence of linear systems that typically become increasingly ill-conditioned with the iterations. To solve these systems, whose original form has a nonsymmetric 3×3 block structure, it is common practice to perform block Gaussian elimination and either solve … Read more

A method for weighted projections to the positive definite cone

We study the numerical solution of the problem $\min_{X \ge 0} \|BX-c\|2$, where $X$ is a symmetric square matrix, and $B$ a linear operator, such that $B^*B$ is invertible. With $\rho$ the desired fractional duality gap, we prove $O(\sqrt{m}\log\rho^{-1})$ iteration complexity for a simple primal-dual interior point method directly based on those for linear programs … Read more

Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization

We propose a first order interior point algorithm for a class of non-Lipschitz and nonconvex minimization problems with box constraints, which arise from applications in variable selection and regularized optimization. The objective functions of these problems are continuously differentiable typically at interior points of the feasible set. Our algorithm is easy to implement and the … Read more

A QCQP Approach to Triangulation

Triangulation of a three-dimensional point from $n\ge 2$ two-dimensional images can be formulated as a quadratically constrained quadratic program. We propose an algorithm to extract candidate solutions to this problem from its semidefinite programming relaxations. We then describe a sufficient condition and a polynomial time test for certifying when such a solution is optimal. This … Read more

Superiorization: An optimization heuristic for medical physics

Purpose: To describe and mathematically validate the superiorization methodology, which is a recently-developed heuristic approach to optimization, and to discuss its applicability to medical physics problem formulations that specify the desired solution (of physically given or otherwise obtained constraints) by an optimization criterion. Methods: The superiorization methodology is presented as a heuristic solver for a … Read more