PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems

PHoM is a software package in C++ for finding all isolated solutions of polynomial systems using a polyhedral homotopy continuation method. Among three modules constituting the package, the first module StartSystem constructs a family of polyhedral-linear homotopy functions, based on the polyhedral homotopy theory, from input data for a given system of polynomial equations $\f(\x) … Read more

Location and design of a competitive facility for profit maximisation

A single facility has to be located in competition with fixed existing facilities of similar type. Demand is supposed to be concentrated at a finite number of points, and consumers patronise the facility to which they are attracted most. Attraction is expressed by some function of the quality of the facility and its distance to … Read more

A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization

We introduce an algorithm to minimize a function of several variables with no convexity nor smoothness assumptions. The main peculiarity of our approach is the use of an the objective function model which is the difference of two piecewise affine convex functions. Bundling and trust region concepts are embedded into the algorithm. Convergence of the … Read more

A globally convergent linearly constrained Lagrangian method for nonlinear optimization

For optimization problems with nonlinear constraints, linearly constrained Lagrangian (LCL) methods solve a sequence of subproblems of the form “minimize an augmented Lagrangian function subject to linearized constraints”. Such methods converge rapidly near a solution but may not be reliable from arbitrary starting points. The well known software package MINOS has proven effective on many … Read more

A Global Convergence Theory of a Filter Line Search Method for Nonlinear Programming

A framework for proving global convergence for a class of line search filter type methods for nonlinear programming is presented. The underlying method is based on the dominance concept of multiobjective optimization where trial points are accepted provided there is a sufficient decrease in the objective function or constraints violation function. The proposed methods solve … Read more

Iterative algorithms with seminorm-induced oblique projections

A definition of oblique projections onto closed convex sets that use seminorms induced by diagonal matrices which may have zeros on the diagonal is introduced. Existence and uniqueness of such projections are secured via directional affinity of the sets with respect to the diagonal matrices involved. A block-iterative algorithmic scheme for solving the convex feasibility … Read more

Rebalancing an Investment Portfolio in the Presence of Transaction Costs

The inclusion of transaction costs is an essential element of any realistic portfolio optimization. In this paper, we consider an extension of the standard portfolio problem in which transaction costs are incurred to rebalance an investment portfolio. The Markowitz framework of mean-variance efficiency is used with costs modelled as a percentage of the value transacted. … Read more

New Variable Metric Methods for Unconstrained Minimization Covering the Large-Scale Case

A new family of numerically efficient variable metric or quasi-Newton methods for unconstrained minimization are given, which give simple possibility of adaptation for large-scale optimization. Global convergence of the methods can be established for convex sufficiently smooth functions. Some encouraging numerical experience is reported. CitationReport V876, Institute of Computer Science, AV CR, Pod Vodarenskou Vezi … Read more

Interior-Point Method for Nonlinear Nonconvex Optimization

In this paper, we propose an algorithm for solving nonlinear nonconvex programming problems, which is based on the interior-point approach. Main theoretical results concern direction determination and step-length selection. We split inequality constraints into active and inactive to overcome problems with stability. Inactive constraints are eliminated directly while active constraints are used to define symmetric … Read more

Nonsmooth Equation Method for Nonlinear Nonconvex Optimization

In this paper, we propose an algorithm for solving nonlinear nonconvex programming problems, which is based on the nonsmooth equation approach. This Algorithm was implemented in the interactive system for universal functional optimization UFO. Results of numerical experiments are reported. CitationReport V844, Institute of Computer Science, AV CR, Pod Vodarenskou Vezi 2, 18207 Praha 8, … Read more