Hidden convexity in a class of optimization problems with bilinear terms

In this paper we identify a new class of nonconvex optimization problems that can be equivalently reformulated to convex ones. These nonconvex problems can be characterized by convex functions with bilinear arguments. We describe several examples of important applications that have this structure. A reformulation technique is presented which converts the problems in this class … Read more

An Adaptive Sampling Sequential Quadratic Programming Method for Equality Constrained Stochastic Optimization

This paper presents a methodology for using varying sample sizes in sequential quadratic programming (SQP) methods for solving equality constrained stochastic optimization problems. The first part of the paper deals with the delicate issue of dynamic sample selection in the evaluation of the gradient in conjunction with inexact solutions to the SQP subproblems. Under reasonable … Read more

On the weakest constraint qualification for sharp local minimizers

The sharp local minimality of feasible points of nonlinear optimization problems is known to possess a characterization by a strengthened version of the Karush-Kuhn-Tucker conditions, as long as the Mangasarian-Fromovitz constraint qualification holds. This strengthened condition is not easy to check algorithmically since it involves the topological interior of some set. In this paper we … Read more

Convergence to a second-order critical point of composite nonsmooth problems by a trust region method

An algorithm for finding a first-order and second-order critical point of composite nonsmooth problems is proposed in this paper. For smooth problems, algorithms for searching such a point usually utilize the so called negative-curvature directions. In this paper, the method recently proposed for nonlinear semidefinite problems by the current author is extended for solving general … Read more

Detecting negative eigenvalues of exact and approximate Hessian matrices in optimization

Nonconvex minimization algorithms often benefit from the use of second-order information as represented by the Hessian matrix. When the Hessian at a critical point possesses negative eigenvalues, the corresponding eigenvectors can be used to search for further improvement in the objective function value. Computing such eigenpairs can be computationally challenging, particularly if the Hessian matrix … Read more

On the convergence of iterative schemes for solving a piecewise linear system of equations

This paper is devoted to studying the global and finite convergence of the semi-smooth Newton method for solving a piecewise linear system that arises in cone-constrained quadratic programming problems and absolute value equations. We first provide a negative answer via a counterexample to a conjecture on the global and finite convergence of the Newton iteration … Read more

Federated Learning on Riemannian Manifolds

Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated … Read more

Decentralized Bilevel Optimization

Bilevel optimization has been successfully applied to many important machine learning problems. Algorithms for solving bilevel optimization have been studied under various settings. In this paper, we study the nonconvex-strongly-convex bilevel optimization under a decentralized setting. We design decentralized algorithms for both deterministic and stochastic bilevel optimization problems. Moreover, we analyze the convergence rates of … Read more

Preconditioned Gradient Descent for Overparameterized Nonconvex Burer–Monteiro Factorization with Global Optimality Certification

We consider using gradient descent to minimize the nonconvex function $f(X)=\phi(XX^{T})$ over an $n\times r$ factor matrix $X$, in which $\phi$ is an underlying smooth convex cost function defined over $n\times n$ matrices. While only a second-order stationary point $X$ can be provably found in reasonable time, if $X$ is additionally \emph{rank deficient}, then its … Read more

Accelerated first-order methods for a class of semidefinite programs

This paper introduces a new storage-optimal first-order method (FOM), CertSDP, for solving a special class of semidefinite programs (SDPs) to high accuracy. The class of SDPs that we consider, the exact QMP-like SDPs , is characterized by low-rank solutions, a priori knowledge of the restriction of the SDP solution to a small subspace, and standard … Read more