Handling of constraints in multiobjective blackbox optimization

This work proposes the integration of two new constraint-handling approaches into the blackbox constrained multiobjective optimization algorithm DMulti-MADS, an extension of the Mesh Adaptive Direct Search (MADS) algorithm for single-objective constrained optimization. The constraints are aggregated into a single constraint violation function which is used either in a two-phase approach, where research of a feasible … Read more

A novel sequential optimality condition for smooth constrained optimization and algorithmic consequences

In the smooth constrained optimization setting, this work introduces the Domain Complementary Approximate Karush-Kuhn-Tucker (DCAKKT) condition, inspired by a sequential optimality condition recently devised for nonsmooth constrained optimization problems. It is shown that the augmented Lagrangian method can generate limit points satisfying DCAKKT, and it is proved that such a condition is not related to … Read more

Improving the global convergence of Inexact Restoration methods for constrained optimization problems

Inexact restoration (IR) methods are an important family of numerical methods for solving constrained optimization problems with applications to electronic structures and bilevel programming among others areas. In these methods, the minimization is divided in two phases: decreasing infeasibility (feasibility phase) and improving optimality (optimality phase). The feasibility phase does not require the generated points … Read more

Non-anticipative risk-averse analysis with effective scenarios applied to long-term hydrothermal scheduling

In this paper, we deal with long-term operation planning problems of hydrothermal power systems by considering scenario analysis and risk aversion. This is a stochastic sequential decision problem whose solution must be non-anticipative, in the sense that a decision at a stage cannot use a perfect knowledge of the future. We propose strategies to reduce … Read more

Randomized Policy Optimization for Optimal Stopping

Optimal stopping is the problem of determining when to stop a stochastic system in order to maximize reward, which is of practical importance in domains such as finance, operations management and healthcare. Existing methods for high-dimensional optimal stopping that are popular in practice produce deterministic linear policies — policies that deterministically stop based on the … Read more

Spectral Projected Subgradient Method for Nonsmooth Convex Optimization Problems

We consider constrained optimization problems with a nonsmooth objective function in the form of mathematical expectation. The Sample Average Approximation (SAA) is used to estimate the objective function and variable sample size strategy is employed. The proposed algorithm combines an SAA subgradient with the spectral coefficient in order to provide a suitable direction which improves … Read more

A filter sequential adaptive cubic regularisation algorithm for nonlinear constrained optimization

In this paper, we propose a filter sequential adaptive regularisation algorithm using cubics (ARC) for solving nonlinear equality constrained optimization. Similar to sequential quadratic programming methods, an ARC subproblem with linearized constraints is considered to obtain a trial step in each iteration. Composite step methods and reduced Hessian methods are employed to tackle the linearized … Read more

Condensed interior-point methods: porting reduced-space approaches on GPU hardware

The interior-point method (IPM) has become the workhorse method for nonlinear programming. The performance of IPM is directly related to the linear solver employed to factorize the Karush–Kuhn–Tucker (KKT) system at each iteration of the algorithm. When solving large-scale nonlinear problems, state-of-the art IPM solvers rely on efficient sparse linear solvers to solve the KKT … Read more

Convergence rates of the stochastic alternating algorithm for bi-objective optimization

Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating … Read more

Dissolving Constraints for Riemannian Optimization

In this paper, we consider optimization problems over closed embedded submanifolds of $\mathbb{R}^n$, which are defined by the constraints $c(x) = 0$. We propose a class of constraint dissolving approaches for these Riemannian optimization problems. In these proposed approaches, solving a Riemannian optimization problem is transferred into the unconstrained minimization of a constraint dissolving function … Read more