Lifting convex inequalities for bipartite bilinear programs

The goal of this paper is to derive new classes of valid convex inequalities for quadratically constrained quadratic programs (QCQPs) through the technique of lifting. Our first main result shows that, for sets described by one bipartite bilinear constraint together with bounds, it is always possible to sequentially lift a seed inequality that is valid … Read more

Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts

Least squares estimators, when trained on a few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator … Read more

Sequential constant rank constraint qualifications for nonlinear semidefinite programming with applications

We present new constraint qualification conditions for nonlinear semidefinite programming that extend some of the constant rank-type conditions from nonlinear programming. As an application of these conditions, we provide a unified global convergence proof of a class of algorithms to stationary points without assuming neither uniqueness of the Lagrange multiplier nor boundedness of the Lagrange … Read more

Maximal perimeter and maximal width of a convex small polygon

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with $n=2^s$ sides are unknown when $s \ge 4$. In this paper, we construct a family of convex small $n$-gons, $n=2^s$ with $s\ge 4$, and show that their perimeters and their widths are within … Read more

Nonconvex Equilibrium Models for Energy Markets: Exploiting Price Information to Determine the Existence of an Equilibrium

Motivated by examples from the energy sector, we consider market equilibrium problems (MEPs) involving players with nonconvex strategy spaces or objective functions, where the latter are assumed to be linear in market prices. We propose an algorithm that determines if an equilibrium of such an MEP exists and that computes an equilibrium in case of … Read more

Tight bounds on the maximal perimeter of convex equilateral small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter of a convex equilateral small polygon with $n=2^s$ vertices is not known when $s \ge 4$. In this paper, we construct a family of convex equilateral small $n$-gons, $n=2^s$ and $s \ge 4$, and show that their perimeters are within $\pi^4/n^4 + O(1/n^5)$ … Read more

Convergence of Quasi-Newton Methods for Solving Constrained Generalized Equations

In this paper, we focus on quasi-Newton methods to solve constrained generalized equations. As is well-known, this problem was firstly studied by Robinson and Josephy in the 70’s. Since then, it has been extensively studied by many other researchers, specially Dontchev and Rockafellar. Here, we propose two Broyden-type quasi-Newton approaches to dealing with constrained generalized … Read more

Proximal Point Algorithm on the Stiefel Manifold

In this paper, we consider the problem of minimizing a continuously differentiable function on the Stiefel manifold. To solve this problem, we develop a geodesic-free proximal point algorithm, which does not require the use of the Riemannian distance. The proposed method can be regarded as an iterative fixed-point method, which repeatedly applies a proximal operator … Read more

Adaptive Regularization Minimization Algorithms with Non-Smooth Norms

A regularization algorithm (AR1pGN) for unconstrained nonlinear minimization is considered, which uses a model consisting of a Taylor expansion of arbitrary degree and regularization term involving a possibly non smooth norm. It is shown that the non-smoothness of the norm does not affect the O(\epsilon_1^{-(p+1)/p}) upper bound on evaluation complexity for finding first-order \epsilon_1-approximate minimizers … Read more

Optimal Convergence Rates for the Proximal Bundle Method

We study convergence rates of the classic proximal bundle method for a variety of nonsmooth convex optimization problems. We show that, without any modification, this algorithm adapts to converge faster in the presence of smoothness or a Hölder growth condition. Our analysis reveals that with a constant stepsize, the bundle method is adaptive, yet it … Read more