A Constraint Dissolving Approach for Nonsmooth Optimization over the Stiefel Manifold

This paper focus on the minimization of a possibly nonsmooth objective function over the Stiefel manifold. The existing approaches either lack efficiency or can only tackle prox-friendly objective functions. We propose a constraint dissolving function named NCDF and show that it has the same first-order stationary points and local minimizers as the original problem in … Read more

First- and Second-Order High Probability Complexity Bounds for Trust-Region Methods with Noisy Oracles

In this paper, we present convergence guarantees for a modified trust-region method designed for minimizing objective functions whose value is computed with noise and for which gradient and Hessian estimates are inexact and possibly random. In order to account for the noise, the method utilizes a relaxed step acceptance criterion and a cautious trust-region radius … Read more

Integral Global Optimality Conditions and an Algorithm for Multiobjective Problems

In this work, we propose integral global optimality conditions for multiobjective problems not necessarily differentiable. The integral characterization, already known for single objective problems, are extended to multiobjective problems by weighted sum and Chebyshev weighted scalarizations. Using this last scalarization, we propose an algorithm for obtaining an approximation of the weak Pareto front whose effectiveness … Read more

Small polygons with large area

A polygon is {\em small} if it has unit diameter. The maximal area of a small polygon with a fixed number of sides $n$ is not known when $n$ is even and $n\geq14$. We determine an improved lower bound for the maximal area of a small $n$-gon for this case. The improvement affects the $1/n^3$ … Read more

Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition

This work proposes a rapid algorithm, BM-Global, for nuclear-norm-regularized convex and low-rank matrix optimization problems. BM-Global efficiently decreases the objective value via low-cost steps leveraging the nonconvex but smooth Burer-Monteiro (BM) decomposition, while effectively escapes saddle points and spurious local minima ubiquitous in the BM form to obtain guarantees of fast convergence rates to the … Read more

An implicit function formulation for optimization of discretized index-1 differential algebraic systems

A formulation for the optimization of index-1 differential algebraic equation systems (DAEs) that uses implicit functions to remove algebraic variables and equations from the optimization problem is described. The formulation uses the implicit function theorem to calculate derivatives of functions that remain in the optimization problem in terms of a reduced space of variables, allowing … Read more

An Exact Approach for Solving Pickup-and-Delivery Traveling Salesman Problems with Neighborhoods

This paper studies a variant of the traveling salesman problem called the pickup-and-delivery traveling salesman problem with neighborhoods that combines traditional pickup and delivery requirements with the flexibility of visiting the customers at locations within compact neighborhoods of arbitrary shape. We derive two optimality conditions for the problem, a local condition that verifies whether a … Read more

Duality assertions in vector optimization w.r.t. relatively solid convex cones in real linear spaces

We derive duality assertions for vector optimization problems in real linear spaces based on a scalarization using recent results concerning the concept of relative solidness for convex cones (i.e., convex cones with nonempty intrinsic cores). In our paper, we consider an abstract vector optimization problem with generalized inequality constraints and investigate Lagrangian type duality assertions … Read more

A Gauss-Newton-based Decomposition Algorithm for Nonlinear Mixed-Integer Optimal Control Problems

For the fast approximate solution of Mixed-Integer Non-Linear Programs (MINLPs) arising in the context of Mixed-Integer Optimal Control Problems (MIOCPs) a decomposition algorithm exists that solves a sequence of three comparatively less hard subproblems to determine an approximate MINLP solution. In this work, we propose a problem formulation for the second algorithm stage that is … Read more

Worst-Case Complexity of TRACE with Inexact Subproblem Solutions for Nonconvex Smooth Optimization

An algorithm for solving nonconvex smooth optimization problems is proposed, analyzed, and tested. The algorithm is an extension of the Trust Region Algorithm with Contractions and Expansions (TRACE) [Math. Prog. 162(1):132, 2017]. In particular, the extension allows the algorithm to use inexact solutions of the arising subproblems, which is an important feature for solving large-scale … Read more