A Riemannian smoothing steepest descent method for non-Lipschitz optimization on submanifolds

In this paper, we propose a Riemannian smoothing steepest descent method to minimize a nonconvex and non-Lipschitz function on submanifolds. The generalized subdifferentials on Riemannian manifold and the Riemannian gradient sub-consistency are defined and discussed. We prove that any accumulation point of the sequence generated by the Riemannian smoothing steepest descent method is a stationary … Read more

Hölder Gradient Descent and Adaptive Regularization Methods in Banach Spaces for First-Order Points

This paper considers optimization of smooth nonconvex functionals in smooth infinite dimensional spaces. A Hölder gradient descent algorithm is first proposed for finding approximate first-order points of regularized polynomial functionals. This method is then applied to analyze the evaluation complexity of an adaptive regularization method which searches for approximate first-order points of functionals with $\beta$-H\”older … Read more

The Impact of Noise on Evaluation Complexity: The Deterministic Trust-Region Case

Intrinsic noise in objective function and derivatives evaluations may cause premature termination of optimization algorithms. Evaluation complexity bounds taking this situation into account are presented in the framework of a deterministic trust-region method. The results show that the presence of intrinsic noise may dominate these bounds, in contrast with what is known for methods in … Read more

Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients

A general framework for solving nonlinear least squares problems without the employment of derivatives is proposed in the present paper together with a new general global convergence theory. With the aim to cope with the case in which the number of variables is big (for the standards of derivative-free optimization), two dimension-reduction procedures are introduced. … Read more

Robust Interior Point Method for Quantum Key Distribution Rate Computation

While the security proof method for quantum key distribution, QKD, based on the numerical key rate calculation problem, is powerful in principle, the practicality of the method is limited by computational resources and the efficiency of the underlying algorithm for convex optimization. We derive a stable reformulation of the convex nonlinear semidefinite programming, SDP, model … Read more

Algorithms for Difference-of-Convex (DC) Programs Based on Difference-of-Moreau-Envelopes Smoothing

In this paper we consider minimization of a difference-of-convex (DC) function with and without linear constraints. We first study a smooth approximation of a generic DC function, termed difference-of-Moreau-envelopes (DME) smoothing, where both components of the DC function are replaced by their respective Moreau envelopes. The resulting smooth approximation is shown to be Lipschitz differentiable, … Read more

Penetration depth between two convex polyhedra: An efficient global optimization approach

During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, … Read more

A Proximal Quasi-Newton Trust-Region Method for Nonsmooth Regularized Optimization

We develop a trust-region method for minimizing the sum of a smooth term f and a nonsmooth term h, both of which can be nonconvex. Each iteration of our method minimizes apossibly nonconvex model of f+h in a trust region. The model coincides with f+h in value and subdifferential at the center. We establish global … Read more

Scalable adaptive cubic regularization methods

Adaptive cubic regularization (ARC) methods for unconstrained optimization compute steps from linear systems involving a shifted Hessian in the spirit of the Levenberg-Marquardt and trust-region methods. The standard approach consists in performing an iterative search for the shift akin to solving the secular equation in trust-region methods. Such search requires computing the Cholesky factorization of … Read more

Fast cluster detection in networks by first-order optimization

Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we … Read more